
1

Universal Systems Language (USL)

and its Automation, the 001 Tool Suite,

for Designing and Building

Systems and Software

Margaret H. Hamilton

September 27, 2012

mhh@htius.com www.htius.com

2

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Hamilton Technologies, Inc. (HTI)
Founded: 1986

Charter: provide the means to modernize system engineering and
software development; maximize reliability and flexibility,
minimize cost and risk and accelerate time to market

Vertical markets: real time, internet based, distributed and data
base environments. Applications include battlefield management,
communications, homeland security, aerospace, emergency
management, manufacturing, banking, medical, energy, traffic,
robotics and enterprise management systems; simulation and
software tools

Development Platform: Unix, Linux

Deployment Platform: Unix, Linux...

Customer: system integrator, tool vendor, end user

3

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

What if there Was a Way to Design Systems

and Build Software that Would Ensure:

Result:
Significantly increased reliability
Significantly lower risk
Significantly higher flexibility
Significantly higher productivity
Significantly lower cost

 Seamless integration, including systems to software

 No interface errors in a system design and its derivatives

 Complete traceability and evolvability

 Maximum inherent reuse

 Automation of much of design

 Automatic generation of 100%, fully production ready code for
any kind or size of software application

 Elimination of the need for a high percentage of testing without
compromising reliability

4

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

There is, but it Takes a Special Kind of Language

 It is possible today with the universal systems language, USL together with its

automation, because of the technology that forms its foundations.

 Based on a theory; in large part derived and evolved from lessons learned from Apollo's

on-board flight software effort*

 Also takes roots from—other real world systems, formal methods, formal linguistics and

object technologies

 USL has evolved over several decades, offering solutions to problems previously

considered next to impossible to solve with traditional approaches

 Always first when put to test (academic, government, commercial)

 Used in research and "trail blazer" organizations; now being positioned for more

widespread use

* M. Hamilton and W. R. Hackler, Universal Systems Language: Lessons Learned from Apollo, IEEE Computer, December 2 2008

Universal Systems Language™ and USL™ are trademarks of Hamilton Technologies, Inc.

 New to the marketplace at large, it would be natural to make assumptions about what is

possible and impossible based on its superficial resemblance to other languages—like

traditional object oriented languages

 It helps to suspend any and all preconceived notions when first introduced to this

language because it is a world unto itself—a completely different way to think about

systems

A Radical Departure, Redefines what is Possible

5

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™ is a trademark of Hamilton Technologies, Inc.

Note 1: no software errors known to occur during flight
Note 2: majority of 44% found by "Nortonizing"
Note 3: To this day we continue to discover new ways to prevent problems from happening; again, just by the way a system is defined and we continue to incorporate these findings into the evolving
technology. Once solutions are made to solve problems, repeat the process over and over again…never assume anything or anyone is perfect.

USL Began with

an Empirical Study

of Apollo and

Skylab Software

and its Development

6

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Analysis Took on Multiple Dimensions, not Just for Space

Missions but Systems in General. Lessons Learned from this

Effort (and their Impact) Continue Today, e.g.,

• Expect the unexpected

• Systems are asynchronous, distributed and event driven in

nature: this should be reflected in the language to define them

and the tools to build them

• Once having done so, no longer a need to explicitly define

schedules of when events occur. By describing interactions

between objects the schedule of events is inherently defined

• The life cycle of a target system is a system with its own life

cycle

• Every system is inherently a system of systems

7

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Root problem: traditional system
engineering and software
development languages and their
environments support users in
"fixing wrong things up" rather
than in "doing things in the right
way in the first place".

8

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™,Development Before the Fact™, DBTF™ System Oriented Object™ and SOO™ are trademarks of Hamilton Technologies, Inc.

Solution: Development Before the Fact (DBTF),
Theory Captured by USL

Paradigm: each system defined with properties that
"come along for the ride" and support its own development

 Every object a System Oriented Object (SOO), itself developed
in terms of other SOOs. A SOO integrates all parts of a system
including function, object and timing oriented. Every system an
object; every object a system

 Instead of Object Oriented Systems, System Oriented Objects.
Instead of model driven systems, system driven models

 Unlike traditional languages, USL is based on a preventive
philosophy

 Instead of finding more ways to test for errors, late into the life
cycle, find ways not to allow them, in the first place; just by the
way a system is defined

9

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™,Development Before the Fact™ is a trademark of Hamilton Technologies, Inc.

 Integrate all of its parts (e.g., types, functions, timing,
structures)

 Maximize its own reliability

 Capitalize on its own parallelism

 Maximize the potential for its own

With USL a System is Defined

from the Very Beginning to Inherently:

RESULT: a formal based system with built-in quality,
and built-in productivity for its own development

— Reuse
— Automation
— Evolution

10

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

SOO™, Universal Systems Language™ (USL™), Development Before the Fact™ and DBTF™ are trademarks of Hamilton Technologies, Inc.

The Language is the Key: Every USL System
Defined with DBTF Properties of Control

• A formalism for representing the mathematics of systems, USL is based on a set of axioms
and formal rules for their application

• Same language used to define and integrate
 — All aspects of and about a system and its relationships and its evolutions
 — Functional, resource and allocation architectures, including hardware, software and

peopleware
 — Sketching of ideas to complete system definitions
 — GUI with documentation…with application
 — All definitions

• Syntax, implementation, and architecture independent

• Unlike formal languages that are not friendly or practical, and friendly or practical

languages that are not formal; USL is considered by its users to be not only formal, but
friendly and practical as well

• Unlike a formal language that is mathematically based but limited in scope from a practical

standpoint (e.g., kind or size of system), USL extends traditional mathematics with a
unique concept of control enabling it to support the definition of any kind or size of system

11

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™ is a trademark of Hamilton Technologies, Inc.

 (Re)Define model with USL

 Analyze automatically the model to ensure it was defined
properly

 Generate automatically much of the design and 100% of
the code, production ready, for any kind or size of system

 Execute the model

 Deliver the real system

Process of Building a USL System

12

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL Philosophy:
Reliable Systems are Defined
in Terms of Reliable Systems

• Use only reliable systems

• Integrate these systems using
 reliable systems

• The result is a system(s) which is
 reliable

• Use resulting reliable system(s)
 along with more primitive ones
 to build new and larger reliable
 systems

A recursively reliable and reusable process

MORE ABSTRACT SYSTEMS

ABSTRACT SYSTEMS

PRIMITIVE
SYSTEMS

A large library of reusables
has evolved over years
of development.

13

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

All model viewpoints can be obtained from FMaps and TMaps. FMaps of functions are by their very nature integrated with TMaps of types*.

TMap properties ensure the proper use of objects in an FMap. Types TMap and Object Map (OMap, an instance of a TMap), facilitate the
ability of a system to understand itself better and manipulate all objects the same way.

Primitive types reside at the bottom nodes of a TMap. Each type is defined by its own set of axioms. Inputs and outputs of each function are
members of types in the TMap. Primitive functions in an FMap, each defined by a primitive operation of a type on the TMap, reside at the
bottom nodes of an FMap. Each primitive function (or type) can be realized on a top node of a map on a lower (more concrete) layer of the
system.

A system is defined from the very beginning to inherently integrate and make understandable its own real world definition.

Object Map™, OMap™, Type Map™, TMap™, Function Map™, FMap™, Primitive Control Structures™, USL™, are all trademarks of Hamilton Technologies, Inc.

*Map: tree of control spanning networks of relations between objects

Every System Defined with Function Maps (FMaps) and Type Maps (TMaps),

the Major Building Blocks of USL

14

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Primitive Control Structures™ is a trademark of Hamilton Technologies, Inc.

15

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

16

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Primitive Control Structures™ is a trademark of Hamilton Technologies, Inc.

Systems Defined in Terms of the Primitive Control Structures
Result in Properties for Real Time Distributed Environments

A system is defined from the very
beginning to inherently maximize its
own flexibility to change and the
unpredictable and to capitalize on
its own parallelism

Every object has a unique priority

Each object and changes to it are traceable

Each object can be safely reconfigured
("pluggable" and "unpluggable")

Every system is event-driven Concurrent patterns can be automatically detected

Every object has a unique parent and
is under control

Every parent has a higher priority and
behaves as a master scheduler for its children

Every input is an event
Every output is an event
Every function is event driven

Single reference, single assignment

17

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

18

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

19

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

TMap™, OMap™ and Object Map™ are trademarks of Hamilton Technologies, Inc.

20

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

21

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

22

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

23

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

24

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

FMap™, TMap™ and USL™ are trademarks of Hamilton Technologies, Inc.

25

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

FMap™, TMap™ and USL™ are trademarks of Hamilton Technologies, Inc.

26

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Object Map™ (OMap™), Type Map™ (TMap™), Execution Map™ (EMap™) and Function Map (FMap™) are all trademarks of Hamilton Technologies, Inc.

27

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

OMap™, TMap™, EMap™ and FMap™ are all trademarks of Hamilton Technologies, Inc.

28

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™, EMap™ and FMap™ are all trademarks of Hamilton Technologies, Inc.

29

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Road Map™, RMap™, USL™, OMap™, TMap™, EMap™ and FMap™, RAT™ are all trademarks of Hamilton Technologies, Inc.

30

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

™

USL™, 001™, 001 Tool Suite™ and System Oriented Objects™ are trademarks of Hamilton Technologies, Inc.

001* is used
to make System Oriented
Objects, each of which is

based upon a unique
concept of control

 Every system defined with USL, including 001 itself, is defined in terms of System Oriented Objects

 001 was used to completely define–and completely and automatically (re)generate–itself

*001 Tool Suite (automation of USL)

31

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™, 001 Tool Suite™, RT(x)™, RMap™, Analyzer™, and RAT™ are all trademarks of Hamilton Technologies, Inc.

32

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™, RT(x)™, FMap™, TMap™, dXecutor™, 001Analyzer™, and RAT™ are all trademarks of Hamilton Technologies, Inc.

33

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

RMap™, OMap™, OMap Editor™, TMap™, RAT™, EMap™ and FMap™ are all trademarks of Hamilton Technologies, Inc.

34

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

• Correct use of USL eliminates majority of errors including all interface errors and their

derivatives

• 001Analyzer hunts down the errors resulting from incorrect use of USL

• Inherent reuse and, if software, automation removes need for most other testing: e.g., built in

aspects, inherent integration, 100% of code and much of the design automatically generated by

001 RAT with same integrity and consistent with the system definition

• 001 RAT generates 1) embedded test cases into the code for finding incorrect object use during

execution; 2) test harnesses with OMap editor for testing each object and its relationships

• Maintenance shares same benefits as development

— developer doesn't ever need to change the code

 — application changes made to the specification-not the code

 — architecture changes made to the configuration-not the code

— only the changed part of the system is regenerated and integrated with the rest of the

 application (again, all automatically). The system is automatically analyzed, generated,

 compiled, linked and executed without manual intervention.

Xecutor™, RT(x)™, USL™, 001Analyzer™ and RAT™ are all trademarks of Hamilton Technologies, Inc.

The need for most kinds of testing
used in a traditional environment is
removed. Most errors are
prevented because of that which is
inherent or automated (i.e., reused)

Since RT(x) automates the process
of going from requirements to
design to tests to use cases to other
requirements and back again the
need to ensure the implementation
satisfies the design and the design
satisfies the requirements is
minimized

One Might Ask "How Can One Build a More Reliable System and at the Same Time
Increase the Productivity in Building it?" Unlike the Traditional "Test to Death" Philosophy,

Less Testing Needed with the Use of Each New DBTF Capability

35

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Mission Planning/Troop Movement (DoD, SEI)

Process Modeling (Mass. Police Dept., CRG, Citizens Bank,

US Army)

Guidance, Navigation and Control (NASA, US Navy)

Domain Analysis (SEI Carnegie Mellon, US Army)

Vehicle Control System Simulation (Lockheed Martin)

Factory Management, Control of Job Shop, Process Control

(Scott Paper, Rexham)

Library Management (Cadeon)

Radar Scheduling (Mitre, DoD, Army)

Traffic Engineering (Mass. Highway Dept.)

Financial Systems (AT, EBS, CitiBank)

End to End Testing (US Army)

Customer Support Systems (BDM)

Missile Tracking and Interception (McDonnell Douglas)

Simulation of Military Vehicles for Training (e. g., M1 tank

for Lockheed Martin, U. of Florida)

War Games (Lockheed Martin, CSC, WARSIM)

Large Systems Environment Simulation (SDIO, LANL)

Toll Booth Systems (MFS)

Fisheries (Alaskan Fisheries)

Groceries Systems Management (Toldark)

Object Tracking and Designation (Mitre, SDIO)

Medical Systems (SAT)

Educational Systems (Compaq)

Classified Systems (NSA, MRJ, SDIO, LANL)

Enterprise Modeling (FEMA, the US Army Acquisition

Process)

Integrated Computer Aided Manufacturing (Rexham

Manufacturing, ICAM for the US Air Force, Boeing,

Rockwell)

Flight Management (NASA)

Ballistic Missile Defense (SDIO)

Battle Management (Los Alamos National Laboratories

(LANL), SDIO, Army)

Space Shuttle Flight Software (NASA, Lockheed Martin)

Banking including Cash Management, World Wide Funds

Transfer and Brokering (Citibank, EBS)

Embedded Avionics Systems (Honeywell, NASA)

Nuclear Engineering (MIT)

Software Development Tools (001 itself, SDIO, AT, Ingres,

SAT, IBM)

Distributed Real Time, Real World, Simulation (DoD, LANL,

SDIO)

Web Based Development (State of MA, Canadian

Government, AT, Cadeon, CRG, EBS)

Global Planning (SDIO)

Communications (Army, BDM, AT&T, US Navy)

Closed Combat Training Systems (US Army, Lockheed

Martin)

Theater Control (SDIO, IBCS, DI-GNU)

Web Based Trading Systems (AT, EBS)

Some USL Applications

USL™ and 001™ are all trademarks of Hamilton Technologies, Inc.

The technology is used today to address some of today's most pressing issues including for military and space related systems to solve problems not heretofore addressed in this arena.

36

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

TP-62, NTB Tool Experiment
001™ is a trademark of Hamilton Technologies, Inc. Copyright © 1997, Hamilton Technologies, Inc.

001™ RECEIVES OUTSTANDING MARKS AT THE
NATIONAL TEST BED

Source: Software Engineering Tools Experiment - Final Report, Vol. 1 Experiment Summary.
 Department of Defense, Strategic Defense Initiative Organization, Washington, D.C.

Area Estimate Teamwork HTI 001 RDD/DCDS

Software
Requirements

200 151 86 87+10 Derived

Documentation SRS, IRS, SDDD SRS, IRS, SDDD SRS, IRS, SEN,
SDDD

SLOC 21,000 C
24,000 Ada

Staff Days 140 140 120

Amount of
System

Completed

Detailed design
complete, some
Ada skeletons

produced

Code generated
and executed;

not fully

Detailed design
partially

completed

% Complete 75% 90% 50%

838

001™ is a trademark of Hamilton Technologies, Inc.

NOTE: Lockheed Martin was the prime contractor for the HTI/001 team.

37

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

38

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Market share of all of these tools is negligible compared to the overall market. StP probly has

The largest market share in this category if one includes only the core products.

N/m – Not meaningful

N/a – Not Available

N/l – Not Listed

39

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Results to date –
Study

• Study compared 001 with current environment.

• Current Environment for Developing Embedded Systems

• Requirements management - Rational RequisitePro

• Design modeling - Rational ROSE

• Design documentation - Rational ROSE & custom macro

• Structural coverage - Eastern Systems LDRA

• Debugger - Borland

• Testing & regression testing - custom script builder

40

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Results to date –
Study

• Findings

• 50% to 75% improvement in requirements management

• Equal structural coverage capability

• 400% improvement in design modeling

• 500% improvement in quality and completeness of auto-
generated code

• 100% improvement in quality and completeness of auto-
generated design documentation

• 100% improvement in design change / iteration process

41

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

Results to date –
Study

• Findings

• Equal training required

• 100% improvement in user interface

• Equal regression testing capability

• 1000% improvement in reuse!

42

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

001™ is a trademark of Hamilton Technologies, Inc.

43

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

 USL/001 systems were in every case No. 1 in productivity

 USL/001 systems exhibited an even greater productivity increase

when applied to larger and more complex systems

 USL/001 systems productivity factors were always greater than 2

 Definition of system in terms of its functional requirements

 Implementing the code

 Testing, validation and verification of the code

 Testing the system as defined

 Full documentation

A large number of comparative productivity tests have been held over the past 15 years in which USL/001

has been used to develop a particular software application in parallel with other software development

approaches used to develop the same identical application in order to determine the relative productivity of

these approaches. These comparisons have been conducted by the US Government, industry, and academic

organizations and refereed by competent third party observers or by the agency sponsoring the competition.

The results of these comparative tests:

Productivity measured from initial establishment of system functional requirements through operational,

validated code. System must insure ultra high level productivity,reliability, reusability, and

documentation. Cost of a line of code includes:

USL/001 PRODUCTIVITY

001 Tool Suite™ and USL™ are trademarks of Hamilton Technologies, Inc.

44

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

001 Tool Suite™ and USL™ are trademarks of Hamilton Technologies, Inc.

45

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™, System Oriented Objects™ and 001™ are trademarks of Hamilton Technologies, Inc.

Page 1 of 2

Guarantee of function integrity after software implementation No guarantee of function integrity after software implementation

Unambiguous requirements, specifications, designs…

remove chaos, confusion and complexity

~Formal, but friendly and practical language

~Language properties promote security

~All phases; same language and tools

~Same language for software and any other system

Ambiguous requirements, specifications, designs…

introduce chaos, confusion and complexity

~Informal or semi-formal language

~Language allows for unsecure systems

~Different phases; different languages and tools

~Different language for software than for other systems

No interface errors in a model and its derivatives

~All found before implementation

~Some prevented inherently

~Some found by automatic static analysis

~Always found

Interface errors

~Most of those found are found after implementation

~Some found manually

~Some found by dynamic testing

~Some never found

Correctness by built-in language properties Behaviour uncertainties until after delivery

Integration ad hoc

~Life cycle not seamless

~System not integrated with software

~Function oriented or object oriented systems

~Model driven systems

~Simulation not integrated with software code

Integration inherent

~Seamless life cycle

~System integrated with software

~System oriented objects

~System driven models

~Simulation integrated with software code

USL (Before the Fact) Traditional

Some Differences

46

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

USL™, System Oriented Objects™ and 001™ are trademarks of Hamilton Technologies, Inc.

Flexible: Systems traceable and evolvable

~Open architecture

~No longer a need to understand details of programming languages

and operating systems

~Smooth transition from legacy

~Maintenance performed at spec level

Page 2 of 2

USL (Before the Fact) Traditional

Some Differences

The more reliable the system, the higher the productivity in its

development

The more reliable the system, the lower the productivity in its

development

001 integrated, defined with and completely generated by itself Tool set not integrated, not defined with and not generated by itself

Less testing becomes necessary with each new before the fact

capability
Trapped in “test to death” philosophy

Automation does real work

~Automates much of the design

~Automatic programming, documentation, test generation,

traceability, integration

~100%, fully production ready code automatically generated for

any kind or size of software application

Automation supports manual process instead of doing real work

~Design process is manual

~Manual/semi-automatic: documentation, programming, test

generation, traceability, integration

Inherent reuse

~Every object a candidate for reuse

~Customization increases reuse pool

Need for inherent reuse (e.g., inherent priority/scheduling)

~Customization and reuse mutually exclusive

Inflexible: Systems not traceable or evolvable

~Locked in bugs, requirements, products (e.g., operating systems,

programming languages), architectures

~A need to understand details of programming languages and

operating systems

~Painful transition from legacy

~Maintenance performed at code level

47

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

• Advantage can be taken of properties that "come with the territory", e.g.,
the potential to obtain the highest form of reuse, i.e., built into the language
itself; much of what was needed before to develop an application no longer
necessary.

• Unlike what has been in large part a manual process or automation to

support the manual process, with USL, automation does the real work;
much of the design is automated as well as all of the software

• Much of what seems counter intuitive with traditional approaches becomes

intuitive with USL. The more reliable the system, the higher the
productivity in its development...less testing becomes necessary with the
use of each new before the fact capability

• This is because of the formal foundation upon which USL/001 is based.

USL™ is a trademark of Hamilton Technologies, Inc.

With USL, the Potential Exists for Reaching the Goal of
High Quality, ―More for Less‖ Systems and Software

48

 Universal Systems Language (USL)

and its Automation, the 001 Tool Suite,
 for Designing and Building

 Systems and Software

Lockheed Martin/IEEE Computer Society
Webinar Series

Margaret H. Hamilton
Hamilton Technologies, Inc.

September 27, 2012

Images on Slide 1 and this Slide
are from The Apollo Prophecies

Copyright © Nicholas Kahn &
Richard Selesnick

mhh@htius.com www.htius.com

Copyright © 1986 - 2012 Hamilton Technologies, Inc. (9-27-12)

48

