Universal Systems Language (USL)
and 1ts Automation, the 001 Tool Suite,
for Designing and Building
Systems and Software

Margaret H. Hamilton
September 27, 2012

mhh@htius.com www.htius.com

Hamilton Technologies, Inc. (HTI)
Founded: 1986

Charter: provide the means to modernize system engineering and
software development; maximize reliability and flexibility,
minimize cost and risk and accelerate time to market

Vertical markets: real time, internet based, distributed and data
base environments. Applications include battlefield management,
communications, homeland security, aerospace, emergency
management, manufacturing, banking, medical, energy, traffic,
robotics and enterprise management systems; simulation and
software tools

Development Platform: Unix, Linux
Deployment Platform: Unix, Linux...
Customer: system integrator, tool vendor, end user

What if there Was a Way to Design Systems
and Build Software that Would Ensure:

Seamless integration, including systems to software

No interface errors in a system design and its derivatives
Complete traceability and evolvability

Maximum inherent reuse

Automation of much of design

Automatic generation of 100%, fully production ready code for
any kind or size of software appllcatlon

Elimination of the need for a high percentage of testing without
compromising reliability

Result:

Significantly increased reliability
Significantly lower risk
Significantly higher flexibility
Significantly higher productivity
Significantly lower cost

There is, but it Takes a Special Kind of Language

It is possible today with the universal systems language, USL together with its
automation, because of the technology that forms its foundations.

Based on a theory; in large part derived and evolved from lessons learned from Apollo's
on-board flight software effort*

Also takes roots from—other real world systems, formal methods, formal linguistics and
object technologies

USL has evolved over several decades, offering solutions to problems previously
considered next to impossible to solve with traditional approaches

Always first when put to test (academic, government, commercial)

Used in research and "trail blazer" organizations; now being positioned for more
widespread use

A Radical Departure, Redefines what is Possible

New to the marketplace at large, it would be natural to make assumptions about what is
possible and impossible based on its superficial resemblance to other languages—Ilike
traditional object oriented languages

It helps to suspend any and all preconceived notions when first introduced to this
language because it is a world unto itself—a completely different way to think about
systems

* M. Hamilton and W. R. Hackler, Universal Systems Language: Lessons Learned from Apollo, IEEE Computer, December 2 2008

iversal Systems Language™ and USL™ are trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

4

Official Pre-flight Anomalies (674)

The First Results: a Formal Systems Theory Based on Six Axioms

Note 1: no so re errors known to occur during flight

Note 2: majority of 44% found by "Nortonizing"

Note 3: To thi e continue to discover new ways to prevent problems from happening; again, just by the way a system is defined and we continue to incorporate these findings into the evolving
solutions are made to solve problems, repeat the process over and over again...never assume anything or anyone is perfect.

™ is a trz ark of Hami S vies. Inc
USL™ is a trademark of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc.

5

Analysis Took on Multiple Dimensions, not Just for Space
Missions but Systems in General. Lessons Learned from this
Effort (and their Impact) Continue Today, e.g.,

» Expect the unexpected

« Systems are asynchronous, distributed and event driven in
nature: this should be reflected in the language to define them
and the tools to build them

« Once having done so, no longer a need to explicitly define
schedules of when events occur. By describing interactions

between objects the schedule of events is inherently defined

« The life cycle of a target system Is a system with its own life
cycle

« Every system is inherently a system of systems

Root problem: traditional system
engineering and software
development languages and their
environments support users In
"fixing wrong things up" rather
than in "doing things In the right
way In the first place".

Solution: Development Before the Fact (DBTF),
Theory Captured by USL

Paradigm: each system defined with properties that
"come along for the ride" and support its own development

Every object a System Oriented Object (SOO), itself developed
In terms of other SOOs. A SOO integrates all parts of a system
Including function, object and timing oriented. Every system an
object; every object a system

Instead of Object Oriented Systems, System Oriented Objects.
Instead of model driven systems, system driven models

Unlike traditional languages, USL is based on a preventive
philosophy

Instead of finding more ways to test for errors, late into the life
cycle, find ways not to allow them, in the first place; just by the
way a system is defined

With USL a System is Defined
from the Very Beginning to Inherently:

Integrate all of its parts (e.g., types, functions, timing,
structures)

Maximize its own reliability
Capitalize on its own parallelism

Maximize the potential for its own
— Reuse

— Automation

— Evolution

RESULT: a formal based system with built-in quality,
and built-in productivity for its own development

The Language is the Key: Every USL System
Defined with DBTF Properties of Control

» A formalism for representing the mathematics of systems, USL is based on a set of axioms
and formal rules for their application

* Same language used to define and integrate
— All aspects of and about a system and its relationships and its evolutions
— Functional, resource and allocation architectures, including hardware, software and
peopleware
— Sketching of ideas to complete system definitions
— GUI with documentation...with application
— All definitions

e Syntax, implementation, and architecture independent

» Unlike formal languages that are not friendly or practical, and friendly or practical
languages that are not formal; USL is considered by its users to be not only formal, but
friendly and practical as well

* Unlike a formal language that is mathematically based but limited in scope from a practical
standpoint (e.g., kind or size of system), USL extends traditional mathematics with a
unique concept of control enabling it to support the definition of any kind or size of system

SOO™, Universal Systems Language™ (USL™), Development Before the Fact™ and DBTF™ are trademarks of Hamilton Technologies, Inc.
Copyright © 1986 - 2012 Hamilton Technologies, Inc.

10

Process of Building a USL System

. model with USL

. automatically the model to ensure it was defined
properly

« Generate automatically much of the design and 100% of
the code, production ready, for any kind or size of system

. the model

o Deliver the real system

11

USL Philosophy:
Reliable Systems are Defined
In Terms of Reliable Systems

A large library of reusables
has evolved over years

of development. .
P e Use only reliable systems

.

PRIMITIVE N\ * Integrate these systems using

SYSTEMS reliable systems

v * The result is a system(s) which is
\ ABSTRACT SYSTEMS ’? reliable

MORE ABSTRACT SYSTEMS

Every System Defined with Function Maps (FMaps) and Type Maps (TMaps),

the Major Building Blocks of USL

with Function Map (FMap) with Type Map (TMap)

Ultimately in terms of 3 primitive control structures

Control Structure

\ Constraint Type and its methods Relations

Model Relationships between Functions (Time) Model Relationships between Types (Space)

Function Objects (Members of Types)

/

All model viewpoints can be obtained from FMaps and TMaps. FMaps of functions are by their very nature integrated with TMaps of types*.

TMap properties ensure the proper use of objects in an FMap. Types TMap and Object Map (OMap, an instance of a TMap), facilitate the

ability of a system to understand itself better and manipulate all objects the same way.

Primitive types reside at the bottom nodes of a TMap. Each type is defined by its own set of axioms. Inputs and outputs of each function are
members of types in the TMap. Primitive functions in an FMap, each defined by a primitive operation of a type on the TMap, reside at the
bottom nodes of an FMap. Each primitive function (or type) can be realized on a top node of a map on a lower (more concrete) layer of the

system.

A system is defined from the very beginning to inherently integrate and make understandable its own real world definition.

*Map: tree of control spanning networks of relations between objects

Object Map™, OMap™, Type Map™, TMap™, Function Map™, FMap™, Primitive Control Structures™, USL™, are all trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

13

The Three Primitive Control Structures

Dependent relationships Independent relationships Alternative relationships

outputs=Parent(inputs) outputs]1,outputs2=Parent(inputs1,inputs2) outputs—Parent(inputs)

J Partltlon(mputs)}
not(value)lx aluel \

outputs=Left(locals) €= locals=Right(inputs) = outputsl=Left(inputs1) outputs2=Right(inputs2) outputs—Left(mputs) outputs—nght(lnputs)

Rules Governing Join (J) Rules Governing Include (I) Rules Governing Or (O)
Inputs to parent are identical to inputs = A parent sends all its inputs to its children. Inputs of both offspring are identical
of right offspring (including order). Children send all their outputs to their to inputs of parent (including order).
Outputs of parent are identical to parent. Outputs of both offspring are identical
outputs of left offspring (including Order of inputs and outputs is maintained. = to outputs of parent (including order).
order). Children do not share inputs or outputs. Inputs of partition function are identical
Outputs of right child are identical to = Left Child receives the first parent inputs. to inputs of parent (including order).
inputs of left offspring (including Right Child receives the rest.
order). Left Child sends the first outputs to parent.

Right Child sends the rest.

Where: inputs, locals, outputs, inputsl, inputs2, outputsl and outputs2 are Ordered Sets of variables. In the Include structure, the Left child is a higher priority
than the Right child; and the leftmost output variable is the highest priority variable.

A USL system model defined in terms of the three primitive control structures will have all its
(and its derivatives') interface errors (~75% to 90% of all errors) eliminated at the definition phase.
These are typically found (if they are found) during testing in traditional development.

Each of the 3 primitive control structures has a set of rules that follow the 6 axioms.

A system is defined from the very beginning to inherently maximize its own reliability and predictability.

Primitive Control Structures™ is a trademark of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc

14

Definition for Making a Table TMap table {TupleOf)

Requirements: Build a system for making a table.

The legs are round and the top is flat; both made
of hard or soft wood. Topl wood Legs {OSetOf}

wood {OneOf}

Where flat and round are each a wood type of object.

, Legl wood
o FMap table=MakeATable(flat,round)Join Hardl Nat ~ Softl Nat
table asse |I1|‘|_\ y&
depends on parts,
top and legs,
being made Y
table=assemble(top,legs) <= top,legs=make_parts(flat,round)Include
I 4 N
Determine: I|I‘L' parts, top and legs,
- relevant parts (objects) are made mdependently
- tasks needed (actions) v N
and their relationships top=MakeTop(flat) legs=make_legs(round)
for making a table Or:is:soft,wood(flat)
using available parts RS
different finish 1s applied
depending on the type ol wood
” W
top=FinishSoftWood(flat) top=FinishHardWood(flat)
True: when flat wood 1s Sofi False: when flat wood 1s Hard

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.
Copyright © 1986 - 2012 Hamilton Technologies, Inc.

15

Systems Defined in Terms of the Primitive Control Structures
Result in Properties for Real Time Distributed Environments

A system is defined from the very
beginning to inherently pdaximize its
own flexibility to change and the
unpredictable and to€apitalize on

its own paralleli37

Every pare

behaves as amaster sched»uler for its children

_ has a unique parent and
Is under control

|

Every system IS EVEHJ-

|

\

Every input is an event !
Every output is an event

Every function is event driven ‘\‘

Concurrent patterns can be automa

Every object has a unique priority

Each object and changes to it are traceable

Single reference, single assignment Each object can be safely reconfigured
("pluggable™ and "unpluggable™)

Primitive Control Structures™ is a trademark of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

16

A System is Defined from the Very Beginning to Inherently
Maximize the Potential for its Own Reuse

A Derived FMap Structure

Definition

Where: x,x1,x2,

Structure (ya,yb = Colnclude?(x)Join) &30 i%:"

AN of variables.
define underlying x1,x2=clone2(x) Syfl_t@”
dI‘ll;‘llli]::;llik\'|"n\ ya,yb=f0(x1,x2)Include ga:yb _ ?(®

foundations

defined by

ya=f1(x1)Join yb=f2(x2)Join

= ijid[b](XZ)

- xa=id[a](x]) o
" yb=right?(xb) >

CyaSleft2(xa), yb=right?(xb)
Qa=left?(xa)> — - o

Syntax defines an interface
pattern for families that want

nheri Use to use a structure's hidden
innerits . (template of) capabilities
a,b = coordinate(plans) in terms of functions. It is

hidden functions to be
applied when used in
another map to structure
a particular nodal family
(a parent and its children)

used to verify the correct
construction of family uses.

a=taskA(plans) b=taskB(plans)

using a reusable structure guarantees
a system 1s built upon reliable foundations
Copyright © 1986 - 2012 Hamilton Technologies, Inc.

17

An Async Structure (that can be Distributed),
with both Synchronous and Asynchronous Behavior, and its Use

Where: I, a, b,

Structure @b = Async?(20b0) 0.3 ai;bt r Syntax
co:continue?(a0,b0) ,fvariables. (:'é;b — ?(I,aO,BG)::

/\ defined by \"*""Asyncfcﬁfitinue‘?(aO,bO)}
a,b=end(a0,b0)I y

BLel1(b0) a,b=more(1,a0,b0)J o TN

a=cl1(a0) “T1,al = A?(1,a0) (bl =B?(I,b0) |
I1,al,bl=do_both(La0po)cr - - —

a,b=Async(I1,al,bl)

recursive leaf

‘iiiaal _ A‘;(I:EIO) 'bl _ B?(I,bO) Where: rBO, rBl, rB2, rB,

rA0, rAl, rA2,rA are Robots
rB,rA=work_together(plans0,rB0,rAQ) J

inherits

rB,rA=coordinate_tasks(plans1,rB1,rA1) plans1,rB1,rA1=setup(plans0,rBO,rA0)
Async{areTasksDone(rB1,rA1)}

Use

newPlans,rB2=calculateAndPlan(plans1,rB1) rA2=performTask(plans1,rA1)

To understand Async's use at coordinate_tasks, go to Async's definition and to understand do_both go to CI's definition.
Ultimately, coordinate_tasks is defined in terms of the Join, Include and Or primitive control structures.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

18

Some Derived TMap Structures

T™. ap _ zero or more of

- the same typ

Structure OSetOf:size?(r@ object can exist

Or{Nat} —

e of

TMap wheel{TupleOf} one or more of the

same or different
. types of children
rim . .
. objects can exist
tirel pressure

defined by Syﬂtng_\\ ™. lor{OneOf} at most one of the
bl ap coloryune
not(size=i) | size=i | ${OSetOf: s1ze) Y set of children
. T } types of objects
Null(r;s el(r;s)Join _ . :
() () ~ T? I‘Cd| nat W ltei can exist
L bluel nat
\T?(E,E& OSGtOf(I'l ;S) AV inherits TMap
wheels{ OSetOf:2} exactly two wheel
o e ode with he same |
designates a recursive pattern OMap — /definition of wheel
wheels
Where: i=indexOf(T) in OSetOf. a wheels object map
with two wheel instances
: wheel
Type: OSetOf:size. wheel the set of children instances
PrimitiveOperations: Null is terminated with a Null object
0OSetOf=k(Any) u
,(I.)_SetOf:tk:(SéZSe(%Ig) primitive operations associated with domain/codomain relations are not
O_SI;%‘?_& Sertf(:T 0SetOf) inherited by uses of this structure. "{OSetOf}" at a TMap node indicates

that an OMap instance is not constrained; it may have any number of elements

TMap™, OMap™ and Object Map™ are trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

19

moveto goes from a parent object

A System: Integration of FMaps and TMaps

to one of its children (e.g.. from car to wheels)

local constraint
on car wheels to

b=is_a_low_tire(c0)cj2 be exactly 4 car{ TupleOf}

bO=k:False,Boolean(COM\

= to:wheel 0 .
b—checvkvswlill:;z(goww;e s,car(z _) wheels:4 body{TupleOf} engine
until:wheel,wheels wsis awheels /\

stylel string color

bl=check_wheel(b0,w)cj wheels:size

l\t=moveto:tire,wheel(w) {OSetOf:size} T
. T T}
bl=is_low_or_not(bO0,t) color{OneOf}
co:lessThan(t,"30") wis a wheel wheel{ TupleOf}
tis a pressure .
, redl nat white
rnm
bl=cl1(b0) tirel bluel nat
bl=k:True,Boolean(t) It =i s
‘ / i 1t] eac \;‘ OCe Nas <
Each fzbstract type (a parent) in a TMap mhg-erlts [.mmszzve operations Type: TupleOf: Child. ich 1T Map nod ‘]1 1S @
from its type structure. Both car and wheel inherit their moveto . . type and set of primitive
o . PrimitiveOperations: e
primitive operations from the TupleOf type structure as: operations
wheels=moveto:wheels,car(car), and P .
’ Child=moveto:Child, TupleOf(TupleO,
pressure=moveto:tire,wheel(wheel) ’ ld, TupleOf(TupleOf)
Th.e s‘.g tvrtmmve. ope.ranons may then be applied as The moveto primitive operation provides a parent object with
primitive functions in an FMap. . .
access to any of its children.
FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc.

20

Operational Scenario A view

with a banking system via an ATM machine

FMap

atm,cust=customer_atm_transaction(atm0,cust0)J*2

enter request
for money

atm,cust=result(atm2,cust2)cc

customer requests money from atm

atm2,cust2=request: ATM(atm1,custl)

ol the interaction of a user
TMap bank_system

user atm bank

name
card

nter s d password

CNLcT PasswWorx money

et authorization
atm1,custl=authorize: ATM(atm0,cust0)

iog

on fully asynchronous
chstributed network
communication/transaction
infrastructure with dXecutor

R W

central ,response=authorization(centralQ,request)

[atm,nn ney =response:ATM®

USL's distributed

A TM outputs an ng:thT)%runningA systems architecture
on . "
" QAT TOrie W)
cust=cash_came_out_or_not(cust2,money) CITOr Message is supported by the 001
or money distributed executor (dXecutor)

co:is:Reject,money(money)

cust=clone(cust2)
customer leaves without money

cust=addto:cash(cust2,money)

customer adds the ATM money to any on hand

An operational model is aset
of user/system interfaces

user

system

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.

runtime environment.

for distributed communications,
each variable is split into its
control and data transfer aspects

- asvnchronous
\""I]|I'l‘|

negotiation

MONEY

direct data transport
from F ol B to G ol C

dXecutor running B

dXecutor running C on ATM

on USER

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

21

Constraints in Terms of TMaps and FMaps in One System
Define Properties about Another USL System

Global constraints are defined

as axioms for types n a TMap Account Axioms: the axiom statement states that an account
TMap "True"=hasCredit(account) must have a credit limit greater than its balance
accounts{osetof’} _)
FMap b=hasCredit(a:account)cj*2 the hasCredit FMap defines

— o the details of the constraint
limit=moveto:limit,account(a)

balance=moveto:balance,account(a)
b=greaterThan(limit,balance)

account

balancel int limitl int

Local constraints are defined Constraint:
as constraints for variables "True"=orderedBy_credit(ordered Accounts)
in an FMa .
p FMap b=orderedBy_credit(accounts) the orderedBy_credit
. checkTwoByTwo FMap defines the details
App]lCﬂthIl of the local constraint
FMap ok=isOrdered(acnt1,acnt2)cj*2
ordered Accounts=order_accounts(unOrdered Accounts)
sort_accounts creditl=credit_for(acntl) the values of both
credit2=credit_for(acnt2) limit & balance abide

ok=lessThan(creditl,credit2) by the hasCredit axiom

partiallyOrdered=order_two_accounts(il,i2)
FMap credit=credit_for(acnt)cj*2

the accounts in orderedAccounts are ordered
by credit with the accounts having less credit
coming before accounts having more credit

limit=moveto:limit,account(acnt)
balance=moveto:balance,account(acnt)
credit=subract(limit,balance)

FMap™ and TMap™ are trademarks of Hamilton Technologies, Inc.
Copyright © 1986 - 2012 Hamilton Technologies, Inc.

22

Operation: Rotate Robot Arm. -

TMap

MfgObj|Nat /

PickUpTime|Nat

PutDownTime|Nat
TurnRate|Nat

RobotA
i
TupleOf

Ports

™
Tup]eOl\
/ I APortlds.

I0Ports. AtPort|OPort!

APortlds
e N

Stock’ Parts'

ConveyorA' Grinder'
ConveyorB'

10Ports
1
0SetOf

10Port
A
OneOf

Input|Nat Output|Nat

FMa

Ports
RotationTime|Nat

. J

FMaps RA = Rotate Robot Arm (to,RA0)

Ps = Moveto:Ports:RobotA(RA0)
atP = Moveto: AtPort:Ports(Ps)

Compute 10Ps = Moveto:10Ports:Ports(Ps)
RA = R{)rt‘ation (RALend,start) start = StartingPosition(atP,IOPs)
me end,Psl = ResetTo_NewPort(Ps,to,IOPs)
RA1 = Moveto:RobotA:Ports(Ps1)
Compute start = StartingPosition(atP,IOPs)
RA = Rotation (RA1l,end,start)

Time

J
J rlOPs = Referto:10Ports(atP,IOPs)
10P = Moveto:1OPosrts(rlOPs)

distance = Diff:Nat(end,start) start = Position(I0P)

S~
rate = Moveto:TurnRate:RobotA(RAT) cozisInput:10Port(I0P)
T
start = Moveto:Qutput:IOPort(IOP)
start = Moveto:Input:10Port(10P)

time = Mul:Nat(distance,rate)
RA = Replace:RotationTime:RobotA(time,RAT)
end,Ps1 = ResetTo_NewPort(Ps,to,IOPs)

end = GetPortID(to,Ps)

10PsN = Locate:10Ports(end,IOPs)
IOPN = Moveto:IOPorts(IOPsN)

PIs = Moveto:Portlds:Ports(Ps)
PIsSTM = TMap:Portlds(Pls)

Ps1 = Replace: AtPort:Ports(IOPN,Ps) end = Index_OneOf(to,PIsTM)

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

23

System Architecture: Integration of
Functional, Allocation and Resource Architectures

WHAT what ON how HOW
Functional Resource Resource]
Architecture Allocation Architecture
Definition Mappings
all function and type alternative allocation all function and type
independencies mappings for each independencies
are identified <+ resource architecture -> are identified
knows knows
Tﬂfap FMap about TMap FMap about TMap FMap
Include Include — /l\de I c/l\de
u
/N / N\ L 1
P e |
Doo
* used to generate %o
USL layering separates System Architecture This approach leads to
the functionality of a system automated scheduling of:
from its imp]lem@mmﬁon Parallelism exists when Functional - Tesources
o .’ Architecture independencies are .
allowing one to dcttcmc mapped to Resource Architecture - best cases of pam]]llchsmpl ,
how best to allocate available independencies. - asynchronous communications
resources in a resulting g e i T T between distributed resources
system architecture. equentiality exists when Functiona
Architecture dependencies or
independencies are mapped to
sense state of Real World - Resource Architecture dependencies. - l\‘\|n1|](| o state ol Real World
(e.g2., market conditions) (e.g., market trends)
I

FMap™, TMap™ and USL™ are trademarks of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc.

24

Defining a USL System Architecture Using the Approach of
Layering Architectural Independence while Integrating Functionality and Resources

ship two boxes concept: defining parallelism in real world systems

Functional Architecture (FA) example: shipping two boxes: one by car and the other by plane

boxB1,boxAl=ship_boxes(boxB,boxA)I .
System Architecture (SA)

carl,boxB1,planel,boxAl=ship_boxes(car,boxB,plane,boxA)I
boxB1=Bl ship(boxB) boxA1=Al ship(boxA)

WHAT is to be DONE
ship them by plane and car planel,boxA1=Al sendBy:plane(plane,boxA)
Allocation Architecture (AA) carl boxB1=BI sendBy:car(car,boxB)
carl,plane1=ship_boxes(car,plane)l this integration results in parallelism (car and plane)
car1<Bl ship(car) planel=Al ship(plane) %ﬁfl}ﬁ?ﬂ;ﬁ DONE WHAT is to be DONE
[allocateTo: [allocateTo: i — is INTEGRATED with
sendBy:car] sendBy:plane] HOW it is to be DONE HOW it is to be DONE
shipping a box is done by scheduling is completely inherently defined
loading it ..
transporting it to its destination SA Schedule Implications S
= . A B Include implies
then, ll]1|t';|\|]ll~! Al A before B > > 13 possible time
. B intervals pairs.
Resource Architecture (RA) HOW it is to be DONE A meets B T8 Onlysixadditional
A overlaps B ———> timing relations exist
veh,box=sendBy:vehicle(veh0,box0)J A starts B B s WhenA afid B are
B reversed in the
vehl=load:vehicle(veh0,box0) A during B > time relationship
veh,box=deliver(veh1)J A finishes B B R predicates, since
B 7 the inverse of
veh2=transportBy:vehicle(vehl) Aequal B > equal is itself.
veh,box=unload:vehicle(veh2)
FMap™, TMap™ and USL™ are trademarks of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc.

25

Representing the Real World

Real World
Objects

&

Xt

Real World

—_

Definition Space

Execution Space \ _TMaps
X

<
OMaps \ __ FMaps

System Design/
Software Implementation
of Target System

Target System |
Operating /
Environment
I Target System
| Commands/
. Code
\

/>' Type Map (TMap)
o/‘(Object Map (OMap)
Function Map (FA?\I;IIP)
Execution Map (EMap)

\

Object Map™ (OMap™), Type Map™ (TMap™), Execution Map™ (EMap™) and Function Map (FMap™) are all trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

26

Definition and Execution Spaces

FMap c=create_car(x)j TMap car{TupleOf}

b,cO=create_car_with_body(x)ci

:4 body{TupleOf i
c0=k:car(x) wheels:4 body{TupleOf} engine

b=k:body(x)
c=put:body,car(b,c0)

FMap instantiation

TN

stylel string

TMap instantiation

color

Definition Space

EMap
c=create_car(x)j

b,cO=create_car_with_body(x)ci

cO=k:car(x) presen
b:k:bOdy(X) present

c:=pur.'b0dy, car(b,c0)

c

=create_car(x)j
b,c0=create_car_with_body(x)ci

c0=k:car(x) pas
b=k:body(x) past

c=put:body,car(b,c0)

Execution Space
c=create_car(X)]
b,cO=create_car_with_body(x)ci

cO=k:car(x) past
b=k:body(Xx) past

c=put:body,car(b,c0)

future present past
interval 1 interval 2 interval 3
¢ L 4 e
M car object e] C [i§; the final car
Y aps X associated 5 co//bﬂ/— ::: rgigﬁﬁf’;gﬁ [[1 object state produced
[] with object ‘ «I by create_car aljd_ _
state 0 o 6 o) .“—*-————______—_ O & O may be used to initiate
6 O same body object s o other EMap actions.
in a new state,

X activates two logically independent
control threads for the k, creation,
operators. ¢0, a car, and b, a body,
are available at the end of interval 1

controlled by ¢

During interval 2, the body object state,
b0, is put into the car object state, c0.
At the end of interval 2, the body object
is contained within the car object.

Note, the body of the car, ¢, does not
at this point in time have a style or
color assigned to it.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

27

A Real-Time Event Driven Multi-threaded Control System

An EMap, an instance of an FMap, shows past, present and future events. Actions are driven concept: map
by object states and selected for execution based upon their priority in terms of control. invocation process
past (is: b)=True: {is:past(b)=True; _
past F — is:present(b)=True; - . F(a,b)=d,e
present @,D) a'e is:future(b1)=True} Fla,b)=de is:present(b1)=True Sy
Ttrell - is:future(b1)=False} “,—\
future y@yZal D.. D(c)=d E(bl}=e A@=al _>.. p(c)2d EbD=e Alaj=al Dic)=d E(bl)=e
Flowof B®=bI C(al J=c B(b)=b1 C(al)=c B(b)=bl C(al)=c ¢ js output before the
Time A and B may operate concurrently A and E may operate concurrently rest of F completes
> , interval 1 . interval 2 . interval 3 .
Interrupt Structure FMap Interrupt Application

Structure interrupt?(i,s0)co=s Syntax ?(i,s0)interrupt=s
{is:present(i)}
Truel 17(i,s0)=s
Falsel continue(i,s0)cj=s

17(1,50)=s F?(s0)=sn
When i and s0 have arrived,
do I, meanwhile, if s0 has

F2(s0)=sn interrupt(i,sn)=s grrived, do F until i arrives.

EMap snapshots: an FMap

£ sng, 1 [nterrupt Execution
instantiation ofthe mtermpr Structure

time 1.F R 2.F . 3.1 R

line " ~— " i
points at which F may be interrupted

interrupt?(i,s0) interrupt?(i,s0)

Falsel continue(i,s0)cj=s Falsel continue(i,s0)cj=s

past F2(s0)=sl
interrupt(i,s1)
Falsel continue(i,s1)cj=s

1. |present F(s0)=s/
future interrupt(i,sl)=s

interrupt?(i,s0)
Falsel continue(i,sO)cj=s past F(s1)=s2

past F2(s0)=sl interrupt(i,s2)
interrupt(i,s1) . present Truel I7(i,s2)=s
Falsel continue(i,s1)cj=s interrupt(i,s2)=s

2. | present F(s1)=s2 ! Interrupt completes with
future final output, s.

w

interrupt(i,s2)'=s

USL™, EMap™ and FMap™ are all trademarks of Hamilton Technologies, Inc.

When the object state, s0, has

a value and the object state, i,
does not have a value; then,

F? happens. When both i and
50 have values; then, I? happens.

operate_car(keyOn,carQ)cj=car

turn:off(keyOn)=keyOff

run(keyOff,carQ)=car

{interrupt}
operate(carQ)=carn

id:2(keyOff,car0Q)=car

An example application of the
interrupt structure used to run
a car until the key is turned off.

The is:present function returns
True when its input has a value
(i.e., it exists).

NOTE:

Map representations on this page
are read left-to-right with the
following form:

Sfunction(input)structure=output

Copyright © 1986 - 2012 Hamilton Technologies, Inc.
28

Road Map (RMap): Shows the Integration of (and Connections Between)

all the Different Components of a System—e.g., How Requirements Relate
to Testing System, User System (Operational Scenarios), Target System
can be used to share libraries across and

within projects, and definitions within and
across libraries (within projects)

RMap of Projects

team development can be
defined as a USL sysiem
using this architecture

\ -
Primitive Type

] Application ¢ St R
Regs. requires’ B \ |
= Fo -~ \ _validatedby ’
= TMap Structure

when analyzing a system, a RoadMap is
automatically generated showing the
components and their relationships

‘T_K -‘I
FMap T LTT
Structure
FMap

Requirements System

Road Map™, RMap™, USL™, OMap™, TMap™, EMap™ and FMap™, RAT™ are all trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.
29

0017 is used

to make System Oriented
Objects, each of which Is
based upon a unigque
concept of control

= Every system defined with USL, including 001 itself, is defined in terms of System Oriented Objects
= 001 was used to completely define—and completely and automatically (re)generate—itself

*001 Tool Suite (automation of USL)

30

The Definition

All Evolving

Applications Library

and Development Process
with the 001 ToolSuite

Target System
to be Defined

Manage

with

RT(x)
Define Analyze Resource Execute .
with —> with —> Allocate = ——> with —_— (l;:fx g;‘sl:;%l
USL Analyzer with RAT Machine

A system is defined from the very beginning to inherently maximize the potential for its
own automation and evoloution.

- A USL model is independent of language, architecture, technology, communications protocol ... i.e., not locked in
- The 001 Analyzer generates the road map (RMap) for the target system
- The 001 RAT can be used to weave aspects about the system into the generated code (e.g., dynamic constraint testing)

USL™, 001 Tool Suite™, RT(x)™, RMap™

, Analyzer™, and RAT™ are all trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

31

System Engineering Seamlessly Integrated with Software Development

System Engineering

- A USL model is independent (re)Define

* Define FMaps and TMaps of language, architecture, FMaps & TMaps
for system architecture technology, communications
e Analv; rotocol ... 1i.e., not locked in
halyze . _ - The RAT can be used to
¢ Simulate real-time behavior weave aspects about the
system into the generated
Software Development code
* Define FMaps and TMaps Manage/Trace
[‘01. aPPllcaUOH Requirements and Metrics

¢ Analyze
¢ Generate production ready code
* Execute on target machine

with RT (x)

Analyze
FMaps & TMaps
with ANALYZER

Design Changes and Maintenance Execute

with machine
ordXecutor

¢ Revise FMaps and TMaps
¢ Repeat engineering and/or
development process

Management

- Generate
from FMaps & TMaps
with RAT

» Organize projects into working libraries

¢ Manage and trace requirements

» Generate product and process metrics

¢ Generate specification, design and test
documentation

A system is defined from the very beginning to inherently maximize the potential for its own
automation and evolution

USL™, RT(x)™, FMap™, TMap™, dXecutor™, 001 Analyzer™, and RAT™ are all trademarks of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc.

32

One of the Most Powerful Aspects: the Degree
to which Reuse Inherently Takes Place

Inherent and explicit patterns
of reuse provided wit,
Maps and TMaps*

Recursive, Inherent, Reuse:
Ty ypes are De Iﬁne
in Terms of Functions,
Functions are Define
in Terms of Types

= “ TMap
P - pnmitive operations ‘
T Ty , o —
A D .
/" objects _ont . \
AT > > A ‘ ‘
Alternative Layer Implementations (_/," / /Fmap [“ype s n\\ \,‘
‘ [/ [(doing) uses" 4 \\ \ ‘
. : \ \ 4 ‘\ e o | 'y
A layer of primitive Types isolates \ pfunction N E = Iypey |
the system being specified (the WHAT) \\Object% @ (being) /
Jrom its possible implementations (the HOW) h gy — R)
opA) {
* Reuse also provided with RMaps, OMaps, EMaps, RAT “ P, - .
(reusable architecture configurations), OMap Editor, etc. T e
RMap™, OMap™, OMap Editor™, TMap™, RAT™, EMap™ and FMap™ are all trademarks of Hamilton Technologies, Inc

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

33

One Might Ask "How Can One Build a More Reliable System and at the Same Time
Increase the Productivity in Building it?" Unlike the Traditional "Test to Death™ Philosophy,
Less Testing Needed with the Use of Each New DBTF Capability

 Correct use of USL eliminates majority of errors including all interface errors and their

derivatives The need for most kinds of testing
used in a traditional environment is
removed. Most errors are

* 001 Analyzer hunts down the errors resulting from incorrect use of USL prevented because of that which is
inherent or automated (i.e., reused)

 Inherent reuse and, if software, automation removes need for most other testing: e.g., built in
aspects, inherent integration, 100% of code and much of the design automatically generated by
001 RAT with same integrity and consistent with the system definition

* 001 RAT generates 1) embedded test cases into the code for finding incorrect object use during
execution; 2) test harnesses with OMap editor for testing each object and its relationships

Since RT§x) automates the process

* Maintenance shares same benefits as development of going from requirements to
, design to tests to use cases to other
— developer doesn't ever need to change the code requirements and back again the
. . . o . need to ensure the implementation
— application changes made to the specification-not the code satisfies the design and the design
] i] satisfies the requirements is
— architecture changes made to the configuration-not the code Wiiyized

— only the changed part of the system is regenerated and integrated with the rest of the
application (again, all automatically). The system is automatically analyzed, generated,
compiled, linked and executed without manual intervention.

T™M T™M ™ -T™M ™ T 1
Xecutor™, RT(x)™, USL™, 001Analyzer™ and RAT™ are all trademarks of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc.

34

Some USL Applications

«Enterprise Modeling (FEMA, the US Army Acquisition
Process)

oIntegrated Computer Aided Manufacturing (Rexham
«Manufacturing, ICAM for the US Air Force, Boeing,
Rockwell)

«Flight Management (NASA)

«Ballistic Missile Defense (SDIO)

.Battle Management (Los Alamos National Laboratories
(LANL), SDIO, Army)

«Space Shuttle Flight Software (NASA, Lockheed Martin)
«Banking including Cash Management, World Wide Funds
Transfer and Brokering (Citibank, EBS)

«Embedded Avionics Systems (Honeywell, NASA)
«Nuclear Engineering (MIT)

«Software Development Tools (001 itself, SDIO, AT, Ingres,
SAT, IBM)

«Distributed Real Time, Real World, Simulation (DoD, LANL,
SDIO)

«Web Based Development (State of MA, Canadian
Government, AT, Cadeon, CRG, EBS)

«Global Planning (SDIO)

.Communications (Army, BDM, AT&T, US Navy)
«Closed Combat Training Systems (US Army, Lockheed
Martin)

«Theater Control (SDIO, IBCS, DI-GNU)

«Web Based Trading Systems (AT, EBS)

«Mission Planning/Troop Movement (DoD, SEI)

«Process Modeling (Mass. Police Dept., CRG, Citizens Bank,
US Army)

«Guidance, Navigation and Control (NASA, US Navy)
«Domain Analysis (SEI Carnegie Mellon, US Army)
«\ehicle Control System Simulation (Lockheed Martin)
«Factory Management, Control of Job Shop, Process Control
(Scott Paper, Rexham)

«Library Management (Cadeon)

«Radar Scheduling (Mitre, DoD, Army)

«Traffic Engineering (Mass. Highway Dept.)

«Financial Systems (AT, EBS, CitiBank)

«End to End Testing (US Army)

«Customer Support Systems (BDM)

«Missile Tracking and Interception (McDonnell Douglas)
«Simulation of Military Vehicles for Training (e. g., M1 tank
for Lockheed Martin, U. of Florida)

«War Games (Lockheed Martin, CSC, WARSIM)

.Large Systems Environment Simulation (SDIO, LANL)
«Toll Booth Systems (MFS)

«Fisheries (Alaskan Fisheries)

«Groceries Systems Management (Toldark)

«Object Tracking and Designation (Mitre, SDIO)

«Medical Systems (SAT)

«Educational Systems (Compaq)

«Classified Systems (NSA, MRJ, SDIO, LANL)

The technology is used today to address some of today's most pressing issues including for military and space related systems to solve problems not heretofore addressed in this arena.

USL™ and 001™ are all trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

001™ RECEIVES OUISTANDING MARKS AI'THE

NAITIONAL TEST BED
Area Estimate Teanmvork HII1 001 RDD/DA6
Software 151 86 87+10 Derived
Requirerments
Documentation SRS, IRS, SDDD | SRS, IRS, SDDD SRS, IRS, SEN
SDDD
SLOC 21,000C
24,000 Ada
Staff Days 838 140 140 120
Anmount of Detailed design Code generated | Detailed design
System conplete, some and executed; pertially
Completed Ada skeletons not fully conmpleted
produced
% Conmplete 75% A% 50%

NOTE: Lockheed Martin was the prime contractor for the HT1/001 team.

Source: Software Engjneering Tools Experinrent - Final Report, Vol. 1 Experimrent Sunmary.
Departiment of Deferse, Strategic Deferse Initiative Organization, Vashington, D.C.

001™ is a trademark of Hamilton Technologies, Inc. Copyright © 1986 - 2012 Hamilton Technologies, Inc.
36

AN INTEGRATED FORMAL APPROACH FOR
DEVELOPING HIGH QUALITY SOFTWARE
OF SAFETY-CRITICAL SYSTEM

By
M. Ouyang
M. W. Golay

Table 2.2 Formal Methods Comparison Matrix

Legendt (e) Engineering Feature
(f) Fomality Feature
(*) Subjective Assessment
none: The feature does not exist for the method

** the number (N)in the cells shows the satisfaction
of attributes N of Table 2.1

Method
&tod)

Meeting

Recuirements? DBTF | Gypsy | HDM HOS IBM SCR VDM Z
) Clearroom

FeatLres ((00))] (STP) [(USE.IT)

Ma‘hmn‘llBlc‘ally ® 1,7,8* 1,7 none 1,78 none 7 7 7

Model-Based

Specicaton Of 7 7 7 7 7 7 7 7

Spedification ® 34 none none 3 none none none none

SelfCheddng

\alidation/ ®

Profbiypng 4 4 3 4 none 4 4 4

UserFriendy ©

inApplication 2 none 2 2 2 none none nore

Spedfication ©)

Audtable/ 5 5 5 5 none 5 5 5

Traceable

Spedficaion @)

Easy to Modify 6 6 6 6 6 6 6 6

Specification

Easy to Maintain 68 none none 68 none none none none

éggl’gﬁC - ©f 3 none | none 3 none none | nore none

Supporting Q)

Todl Availzbilty 23 none 23 none none none none none

F[’)e\dqf\;’gﬂ (* | highest | lower lower | higher higher lower | lower lower

| ment ¥ . !

O%re Y highest | average | average higher average |awerage | average | average

Reliability

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

37

Market share of all of these tools is negligible compared to the overall market. StP probly has
The largest market share in this category if one includes only the core products.

N/m — Not meaningful
N/a — Not Available
N/l — Not Listed

N

~N o o~ w

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Company
Product Name

Foundation Date
Customers

Users

WW Revenues
SentryTech Ranking
Methodology

Meth. Rank

Testable Architecture
Traceability to code
Trace to Test
Integration
Scaleability

Ease of Use

Pattern Reuse

UML

Content Searchable

Automation
Code generation
Performance
Tool integration
Repository/CM
Strong Typing
Low Risk
Maturity
Productivity
Quality of code
Rules
Documentation
Cost

Weighted Average
Rank

Aonix Rational Sun Micro- IBM Corp HTI Objectime Objects In'tl
Corp systems
StP, Several Java Studio |Visual Age OO01, RT(X) Objectime | Together/J
Validator and C++
1996 1997 1983 1890 1993 1997 1993
20,000 50 n/a n/a n/a 1000 n/a
500,000 n/a n/a n/a n/a n/a n/a
422MM 310.5MM 1,117.7MM 12 844MM n/l n/l n/l
167 41 9 1 n/l n/l n/l
Weight (%) | Extended | Extended | Prototype @ Component Spiral Component. Extended
Waterfall Waterfall Waterfall
100% 5 5 3 5 9 5 5
100% 0 0 9 0 9 5 0
100% 8 0 9 1 9 5 5
100% 9 0 2 2 9 0 7
75% 7 2 7 7 9 5 9
100% 5 2 1 2 9 5 6
75% 2 1 9 2 8 5 2
100% 2 2 2 5 9 0 5
50% 5 5 5 5 5 5 5
100% 9 2 0 0 9 0 5
75% 2 2 2 7 9 7 7
100% 5 2 9 2 9 7 5
100% 5 5 1 5 9 2 5
20% 8 5 2 2 8 3 1
50% 0 9 0 9 9 5 9
50% 0 0 0 0 9 0 0
100% 0 0 0 0 7 0 0
75% 9 5 0 5 9 5 1
100% 5 2 5 3 9 7 5
100% 3 1 9 1 9 3 3
50% 0 0 9 0 9 0 3
20% 5 1 0 0 9 1 3
20% 0 3 6 4 2 1 5
3.31 1.62 3.13 217 6.61 2.67 3.28
2 7 4 6 1 5 3

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

38

Results to date —
Study

e Study compared 001 with current environment.

e Current Environment for Developing Embedded Systems
e Requirements management - Rational RequisitePro
e Design modeling - Rational ROSE
e Design documentation - Rational ROSE & custom macro
o Structural coverage - Eastern Systems LDRA
e Debugger - Borland
o Testing & regression testing - custom script builder

39

Results to date —
Study

e Findings

50% to 75% improvement in requirements management
Equal structural coverage capability
400% improvement in design modeling

500% improvement in quality and completeness of auto-
generated code

100% improvement in quality and completeness of auto-
generated design documentation

100% improvement in design change / iteration process

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

40

Results to date —
Study

e Findings
e Equal training required
e 100% improvement in user interface
e Equal regression testing capability
e 1000% improvement in reuse!

41

System Size (K Lines of Code)

Productivity Results

All of these system were defined with USL
and developed with 001, including 001 itself.

1000 - (100
500 - I
- L 80
100 - I
- L 60
50_
- L 40
10 -
5-
_ L 20
0- 0

I MOPS lPhoenix

001™ is a trademark of Hamilton Technologies, Inc.

' HOE

'DETEC

OTD ' Xecutor l

Applications

MSS

IG-Train IDomain IBFVSim' 001

Productivity (001 to Traditional)

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

42

USL/001 PRODUCTIVITY

Productivity measured from initial establishment of system functional requirements through operational,
validated code. System must insure ultra high level productivity,reliability, reusability, and
documentation. Cost of a line of code includes:

Definition of system in terms of its functional requirements
Implementing the code

Testing, validation and verification of the code

Testing the system as defined

Full documentation

A large number of comparative productivity tests have been held over the past 15 years in which USL/001
has been used to develop a particular software application in parallel with other software development
approaches used to develop the same identical application in order to determine the relative productivity of
these approaches. These comparisons have been conducted by the US Government, industry, and academic
organizations and refereed by competent third party observers or by the agency sponsoring the competition.
The results of these comparative tests:

USL/001 systems were in every case No. 1 in productivity
USL/001 systems exhibited an even greater productivity increase
when applied to larger and more complex systems

USL/001 systems productivity factors were always greater than 2

001 Tool Suite™ and USL™ are trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

43

Integrated, Seamless, Configurable Environment
for Systems Engineering and Software Development

Requirements Capture

User input

Document parsing

Use cases

Inputs from/about other
tools and languages

Systems defined in
other languages

with USL and the 001 Tool Suite

Automatically Generated Code

Distributed/real-time, client/server, graphics, user interface

Integrated, complete (100%), fully production-ready for any kind of system

Communications, scientific, internet, database, manufacturing, ...

User customizable formats

Requirements analysis, functional specifications
Reuse Design documents, metrics, CM
Libraries || Formal
=H=b o Definition
== . Simulation/
Analysis Testing/
General Execution
Portable Standard Libraries - -
Operating System Services Language Specification Generation

Configuration Management
Internet Services (HTMLS5)

XML, PHP

Automatically Generated Documentation

C, Java, Scala, PHP

—-————q>

mmunication
Legacy Code ’?%P /TP ca 0_ S‘ Configurable Output
| Graphics/GUI Generation
Open SSL GNOME/GTK..., C, Java, English, ...
Architecture I?/It,S.VfV[gL%PCHGL API interfaces,
Interfaces oulfALId, 'pBMS Linux, Unix, ...
Oracle, Versant, Instrumented code
MySQL, ODBC Embedded code
Outputs/projections
to other tools/languages
Degree of "'development before the factness'' (e.g., SysML/UNIgL d%agrams)

Static analysis better than dynamic

Inherent (by way system is defined) better than static

Better yet, not having to define it at all

Ultimate reusable: application of USL to both systems and software unifying their understanding
by a formal means with a commonly held set of system semantics

Real-time/Distributed
System Simulation
Dynamic behavior
Time, cost, risk, ...
Resource utilization

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

001 Tool Suite™ and USL™ are trademarks of Hamilton Technologies, Inc.

44

Some Differences

.- Page 1 of 2
Traditional USL (Before the Fact)
Integration ad hoc Integration inherent
~Life cycle not seamless ~Seamless life cycle
~System not integrated with software ~System integrated with software
~Function oriented or object oriented systems ~System oriented objects
~Model driven systems ~System driven models
~Simulation not integrated with software code ~Simulation integrated with software code
Behaviour uncertainties until after delivery Correctness by built-in language properties
Interface errors No interface errors in a model and its derivatives
~Most of those found are found after implementation ~All found before implementation
~Some found manually ~Some prevented inherently
~Some found by dynamic testing ~Some found by automatic static analysis
~Some never found ~Always found
Ambiguous requirements, specifications, designs... Unambiguous requirements, specifications, designs...
introduce chaos, confusion and complexity remove chaos, confusion and complexity
~Informal or semi-formal language ~Formal, but friendly and practical language
~Language allows for unsecure systems ~Language properties promote security
~Different phases; different languages and tools ~All phases; same language and tools
~Different language for software than for other systems ~Same language for software and any other system
No guarantee of function integrity after software implementation Guarantee of function integrity after software implementation

USL™, System Oriented Objects™ and 001™ are trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

45

Some Differences

Traditional

USL (Before the Fact)

Page 2 of 2

Inflexible: Systems not traceable or evolvable

~Locked in bugs, requirements, products (e.g., operating systems,
programming languages), architectures

~A need to understand details of programming languages and
operating systems

~Painful transition from legacy
~Maintenance performed at code level

Flexible: Systems traceable and evolvable
~Open architecture

~No longer a need to understand details of programming languages
and operating systems

~Smooth transition from legacy
~Maintenance performed at spec level

Need for inherent reuse (e.g., inherent priority/scheduling)

~Customization and reuse mutually exclusive

Inherent reuse
~Every object a candidate for reuse
~Customization increases reuse pool

Automation supports manual process instead of doing real work
~Design process is manual

~Manual/semi-automatic: documentation, programming, test
generation, traceability, integration

Automation does real work
~Automates much of the design

~Automatic programming, documentation, test generation,
traceability, integration

~100%, fully production ready code automatically generated for
any kind or size of software application

Trapped in “test to death” philosophy

Less testing becomes necessary with each new before the fact
capability

Tool set not integrated, not defined with and not generated by itself

001 integrated, defined with and completely generated by itself

The more reliable the system, the lower the productivity in its
development

The more reliable the system, the higher the productivity in its
development

USL™, System Oriented Objects™ and 001™ are trademarks of Hamilton Technologies, Inc.

Copyright © 1986 - 2012 Hamilton Technologies, Inc.

46

With USL, the Potential Exists for Reaching the Goal of
High Quality, “More for Less” Systems and Software

e Advantage can be taken of properties that "come with the territory", e.g.,
the potential to obtain the highest form of reuse, i.e., built into the language

itself; much of what was needed before to develop an application no longer
necessary.

* Unlike what has been in large part a manual process or automation to
support the manual process, with USL, automation does the real work;
much of the design is automated as well as all of the software

e Much of what seems counter intuitive with traditional approaches becomes
Intuitive with USL. The more reliable the system, the higher the
productivity in its development...less testing becomes necessary with the
use of each new before the fact capability

* This is because of the formal foundation upon which USL/001 is based.

USL™ js a trademark of Hamilton Technologies, Inc.
Copyright © 1986 - 2012 Hamilton Technologies, Inc.

47

Universal Systems Language (USL)
and its Automation, the 001 Tool Suite,
for Designing and Building
Systems and Software

Lockheed Martin/IEEE Computer Society
Webinar Series
Margaret H. Hamilton
Hamilton Technologies, Inc.

September 27, 2012

Images on Slide 1 and this Slide
are from The Apollo Prophecies
Copyright © Nicholas Kahn &
Richard Selesnick

mhh@htius.com www.htius.com

Copyright © 1986 - 2012 Hamilton Technologies, Inc. (9-27-12)
48

