4, 1994

EERING

APRIL

N
Z
)
3
~
3
)
@
s
3
)
s
@
()
—
=
2
=
—
—
(—]
==
fr
2
=i
el

=

OFTWARE

FOR SOFTWARE

DESIGN ENGINEERS

By Margaret H. Hamilton

HAMILTON TECHNOLOGIES INC.

Inside Development
Before The Facl

TODAY’S TRADITIONAL SYSTEM ENGI-
NEERING AND SOFTWARE DEVELOP-
MENT ENVIRONMENTS SUPPORT THEIR
USERS IN “FIXING WRONG THINGS UP”’

rather than in “doing them right in the
first place.” Things happen too late, if
atall. Systems are of diminished quality
and an unthinkable amount of dollars
is wasted. This becomes apparent when
analyzing the major problems of system
engineering and software development.

In defining requirements, develop-
ers rely on many different types of mis-
matched methods to capture aspects of
even a single definition. Among other
things, data flow is defined using one

/\ Control Structure

AL~ Gonstraint

O Function
O Type and its methods ---- Relations

—— Object (members of types)

1L EVERY MODEL IS DEFINED :i# terms of an integration of Func-
tional Maps (FMaps) for capturing time behavior and Type Maps (TMaps)
Jor capturing space behavior. A map is both a control hierarchy and a net-

work of interacting objects.

method, state transitions another, dy-
namics another, data types another
and structures using still another
method.

Once these aspects of requirements
are defined, there is no way to integrate
them. Designers are forced to think and
design this way because of the limita-
tions of methodologies available to
them.

This leads to further problems. In-
tegration of object to object, module to
module, phase to phase, or type of ap-
plication to type of application becomes
even more of a challenge than solving
the problem at hand.

This is compounded by a mis-
match of products used for design and
development. Integration of all forms is
left to the devices of a myriad of devel-
opers well into the development proc-
ess. The resulting system is hard to un-
derstand, objects cannot be traced, and
there is at best little correspondence to
the real world.

With these traditional methods,
systems are actually encouraged to be
defined as ambiguous and incorrect.
Interfaces are incompatible and errors
propagate throughout development.
Once again the developers inherit the
problem. The system and its develop-
ment are out of control.

Requirements are defined to con-
centrate on the application needs of the
user, but they do not consider that the
user changes his mind or that his envi-

exist for reuse, it does not exist for

INCLUDE

Top = MakeTop (FLATwood)

OR is:Soft, Wood (FLATwood)

Top = FinishSoftWood (FLATwood) Top = FinishHardWood (FLATwood)

Legs = MakeLegs (ROUNDwood)

THap: Table automation.
_ Tupleor. Systems are defined with in- |
Top (Wood.) Legs sufficient intelligence for auto- |
Wood i
FMap: Table = MakeATable (FLATwood, ROUNDuwoot) oy O5eldt mated tools to use them as inpur, Jf
- N Leg (Wou) Too often, automated tools con-
o Hard (Nat) ~ Soft (Nat) -89 (Wo0OL. centrate on supporting the manual
process instead of doing the real
work.
TABLE = Assemble (Tops, Legs) Top, Legs = MakeParls (FLMTwood, ROUNDwoat) Definitions supported by |

automation are given to developers
to turn into code manually. A proc-
ess that could have been mecha-
nized once for reuse is performed
manually over and over again.
When automation attempts
to do the real work, it is often
incomplete across application do-
mains or even within a domain,

2. THE THREE PRIMITIVE STRUCTURES are wltimately used to
decompose a map. The FMap part of the system, MakeATable, is modeled
using the JOIN, INCLUDE and OR for controlling dependent, inde-
pendent, and decision-making functions, respectively.

ronment changes. Porting becomes a new development
for each new architecture, operating system, database,
graphics environment, language, or language configu-
ration; critical functionality is avoided for fear of the
unknown, and maintenance is both risky and the most
expensive part of the life cycle. When a system is
targeted for a distributed environment, it is often de-
fined and developed for a single processor environment
and then re-developed for a distributed environ-
ment—another unnecessary development.

Insufficient information about a system’s run-time per-
formance, including that concerning the decisions to be
made between algorithms or architectures, is incorporated
into a system definition. This results in design decisions that
depend on analysis of outputs from exercising ad hoc im-
plementations and associated testing scenarios. A system is
defined without considering how to separate it from its
target environment.

It is not known if a design is a good one until its
implementation has failed or succeeded. The focus for
reuse is late into development during the coding phase.

Requirements definitions lack

resulting in incomplete code such
as skeleton or shell code.
Manual processes are
needed to complete unfinished
automations. An automation for
one part of a system (e.g., graph-
ics) needs to be manually integrated with an automation
for another part of the system (e.g., scientific algorithms)
or with the results of a2 manual process.

The code generated is often inefficient and/or hard-
wired to a particular architecture, language, or even a
particular version of alanguage. Most of the development
process is needlessly manual. Again, all these manual
processes are creating new errors each time.

A promising solution to these problems is develop-
ment before the fact. Whereas the traditional approach is
after the fact, or curative, development before the fact
approach is preventative.

DEVELOPMENT BEFORE THE FACT

With development before the fact, each system is
defined with properties that control its own design and
development. With this paradigm, a life cycle inherently
produces reusable systems, realized in terms of automat-
ion. Unlike before, an emphasis is placed on defining
things right the first time. Problems are prevented before
they happen. Each system definition not only models its
application but it also models its own life cycle.

properties to help find, create, and

Type Maps

Object Maps Examples

make use of commonality. Modelers are
forced to use the same informal and
manual methods to find ways to divide
a system into components natural for

(a)

r-0(Top)on-1,0n-2

r-0(Table)r-1

/J\ /\ r.uun-1,

1-0(Table)r-1

on-2
I%l -1

on-1,0n-2(Legs)~1 | rO(Topon-1,0n-2 on-1,0n-2,(Legs)r1

reuse.

Why reuse something in today’s
changing market if it is not able to be
integrated, not portable or adaptable,

(b)

on-1,0n-2(Legs)on-3,0n-4

on-1(FrontLegs)on-3

on-1(Legs)on-3
|
I |
on-2(BackLegs)on-4

on-1

3,

1
on-1(FrontLegs)on-3

and it is error-prone?

The result is that there is little in-
centive for reuse and redundancy is a
way of life. Again, errors propagate ac-

is(SoftOrHardWood)on
Pz 0:is("Hard") N
is(HardWood)on

is(Soft0rHardWood)on
|
0:is("Hard")
|
is(HardWood-1)on

is
"Hard"
on

is(SoftWood)on

cordingly.

Automation, itself, is an inherently
reusable process. If a solution does not
APRIL 4,1994

3. A TMap (AND ITS CORRESPONDING OMaps) can be decom-
posed into its explicit relationships in terms of three primitive structures.

Yo = Alil? Y =Bxp)?

b) 0)

C Ya, ¥ = Coniclude(X))

cl Cl

(Va=A(Xa)7)(Vh=B(Xh)?> al=laskA(a) b1=taskB(a,h)

Syntax for use

a1,b1 = Process(a,h)

Example of a use

4. DEFINED STRUCTURES are used to define
non primitive structure reusables in terms of more
primitive structures. COINCLUDE is an example
of a system pattern that has been turned into a de-
fined structure.

From the very beginning, a system inherently inte-
grates all of its own objects (and all aspects of and about
these objects) and the combinations of functionality using
these objects. It maximizes its own reliability and flexibil-
ity to change; capitalizes on its own parallelism; supports
its own run-time performance analysis and the ability to
understand the integrity of its own design; and maximizes
the potential for its own reuse and automation. The
system is developed with built-in quality and with buile-in
productivity.

Whereas a curative means to obtain quality is to
continue testing the system until errors are eliminated, a
preventative means is to not allow errors to creep in, in the !
first place. 1

Whereas a curative means to accelerate a particular i
design and development process is to add resources, such |
as people or processors, a preventative approach would !

find a more efficient way to perform this process, such as
capitalizing more on reuse or eliminating parts of it
altogether, yet still reaching the desired results.

Effective reuse is a preventative concept. Reusing
something with no errors to obtain a desired function-
ality avoids the errors of a newly developed system;
time and money will not be wasted in developing that
new system. For successful reuse, a system has to be
worth reusing and reused for each user requiring func-
tionality equivalent to it. This means starting from the
beginning of a life cycle, not at the end, which is
typically the case with traditional methods. Then a
system is reused for each new phase of development.
No matter what kind, every 10 reuses saves 10 unnec-
essary developments.

THE TECHNOLOGY

Development before the fact technology includes a
language, an approach, and a process (or methodology),
all of which are based upon a formal theory. Once under-
stood, the characteristics of good design can be reused by
incorporating them into a language for defining any
system. This language is the key to development before
the fact. It has the capability to define any aspect of any
system (and any aspect about that system) and integrate
it with any other aspect. These aspects are directly related
to t he real world.

This same language can be used to define system
requirements, specifications, design, and detailed design for
functional, resource and resource allocation architectures
throughout all levels and layers of “seamless” definition,
including hardware, software and peopleware. It could be
used to define missile or banking systems as well as real-time
or database environments. It is used to define and integrate
implementation-independent, function-oriented decom-
positions with implementation-independent, object-ori-
ented decompositions. It defines and integrates these de-
compositions (control hierarchies) with networks of func-
tions and objects. It can be used to define systems with
diverse degrees of fidelity and completeness. Such a lan-
guage can always be considered a design language, since
design is relative; one person’s design phase is another
person’s implementation phase.

This language has mechanisms to define mecha-
nisms for defining systems. Although the core lan-

Structure:

a,b = Asyne(l,a0,h0)

0:Conlinue?(La0,00
e)

a,b <End(l,a0,b0) J

/\ a,b = Asyne(I1,a1,b1)

a=Identify2:Any(1,a0) b=Cloned:Any(b0)

Syntax: a,b="?(1,a0,b0)

Async: Continue?

Citat=ng,a02) (bl =B(L,b0j2 D

NextStep,RB2 = TurnAndPlan(plans1,RB1)

11,a1,b1 = Process(l,a0,h0)

Use:
RB,RA = DependentRohots(plans0,RBO,RAQ)

RB,RA = CoordinateTasks(plans1,RB1,RA1)
S —

Async: TasksDone —_
RA2 = Move(plans1,RA1)

0l
Tl = ALl b1 =B1,10)?

J
plansi,
RBLAKY = nitialze g)

guage is generic, the user “language,” a by-product
of a development, can be application-specific, since
the language is semantics-dependent but syntax-in-
dependent.

The first step in building a before the fact
system is to define a model with the language. This
process could be in any phase of development,
including problem analysis, operational scenarios,
and design. The model is automatically analyzed to
ensure that it was defined properly. This includes
static analysis for preventative properties and dy-
namic analysis for user intent properties.

A fully production-ready and fully integrated
software implementation for any kind of applica-
tion, consistent with the model, is then automat-
ically generated by the generic generator for a se-

5. ASYNC IS A DEFINED STRUCTURE that can be used
to define distributed systems with both synchronous and asyn-

chronous behavior.

lected target environment in the language of choice
(for example, in C or in Ada) and the architecture
of choice. If the selected environment has already

been configured, it is selected directly; if not, the gener-
ator is configured for a new language (for example, for
VHDL, EDIE and C++) and new architecture before it
is selected.

The resulting system can then be executed. If the
desired system is software, the system can now be tested
for further user intent errors. It becomes operational
after testing. Target changes are made to the require-
ments definition, not to the code. Target architecture
changes are made to the configuration of the generator
environment, not to the code. If the real system is
hardware or peopleware, the software system serves as

' grain detail. Each errorwas placed into a category ac- |
cording to the means taken to prevent it by the very
way a system was defined. A theory and methodology
was derived for defining a system such that this entire |
class of interface errors would be eliminated. ;
INTEGRATED MODELING ENVIRONMENT
The first technology derived from this theory con-
centrated on defining and building reliable systems in
terms of functional hierarchies. Since that time this tech-
nology has been further developed to design and build |
systems with development before the fact properties in
terms of an integration of both functional and type maps

asimulation upon which the real
system can be based.

Development before the fact
is a function- and object-oriented
approach based upon a unique
concept of control. The founda-
tions are based on a set of axioms
and on the assumption of the ex-
istence of a universal set of ob-
jects. Each axiom defines a rela-
tion of immediate domination.
The union of the relations defined
by the axioms is control. Among
other things, the axioms establish
the relationships of an object for
invocation, input and output, in-
putand output access rights, error
detection and recovery and order-
ing during its developmental and
operational states. Table 1 sum-
marizes some of the properties of
objects within development be-
fore the fact systems.

This approach is used
throughouta life cycle starting with
requirements and continuing with
functional analysis, simulation,
specification, analysis, design, sys-
tem architecture design, algorichm
development, implementation,
configuration management, test-
ing, maintenance, and reverse engi-
neering, Its users include managers,
system engineers, software engi-
neers, test engineers, as well as
end users.

The development before
the fact approach had its earlier
beginnings in 1968 with the
Apollo space missions when re-
search was performed for de-
veloping software for man-
rated missions. This led to the
finding that interface errors ac-
counted for approximately
75% of all errors found in the
flight software during final
testing. They include data flow,
priority, and timing errors at
both the highest and lowest
levels of a system to the finest

Table 1: Object-oriented properties of

development before the fact

Control: The ability to have an object control and be controlled throughout all phases
of its development and its birth, life, and death of operation.

Creation: The ability to create an object.

Heference: The ability to use or mention an object.

Unigueness: The ability to select or find an object.

Destruction: The ability for an object and all of its influences to be destroyed.

Identification: The ability to identify an object with respect to its structure, its behavior,
its relationships in development and in operational real time and real space with
respect to an integrated set of all aspects of control.

Classification: The ability to belong to the same class with other objects, each of
which shares a common set of properties.

Traceabliity: The ability to trace the birth, life, and death of an object and its
definitions, as well as its transitions between definition and instantiation; trace
changes and know their effects; trace patterns (e.g. distributed patterns), control,
and function flow (including data, priority access rights and timing).

Accessibility: The ability to safely access an object in all of its states of existence.

Boundary conditions: The ability to safely exclude invalid states of an object.

Security: The ability for an object to keep its behavior and structure secure (e.g.
communication of one function with another function always takes place at the same
level in a hierarchy and a given object has no knowledge of a higher level object.)

Belonging: The ability of an object to belong to, for example, a parent or a set of
values.

Having: The ability for an object to have for example, a child, sibling, a set of proper
values, and an architecture.

Timing: The ability to instantiate an object at a given time or a given event.

Modularity: The ability for an object to be portable, flexible, and reusable.

Healthy existence: The ability for an object to live a full life throughout all of its states
of being and doing (persistence).

Completion: The ability to determine when an object is completely defined, used, or
instantiated.

Inheritance: The ability of an object to derive behavior in terms of other objects.

Real-time and space consirainis: The ability to realize an object in terms of its
physical existence.

Minimality: The ability to define necessary and sufficient information about an object.

Containment: The ability of an object to have an inside and an outside
(encapsulation). The outside view of an object may be completely replaced by the
inside view of the object in question.

Representation: The ability for an object to have a natural correspondence to the
desired aspects of the real-world object of which it is a model.

Ordering: The ability to establish a relation in a set of objects so that any two object
elements are comparable in that one of said elements precedes the other said
element.

Priority:The ability to determine which object is more important than any other, given
constraints such as time, priority, order, events, and architecture.

Relativity: The ability for an object to change roles depending on how it is being used
(polymorphism) or viewed. This includes being vs. doing, controller vs. controllee,
parent vs. children, requirements vs. implementation.

Structure: The ability to distinguish between properties of dependence,
independence, and decision-making within, between and about objects.

Predictability: The ability for the behavior and structure of an object to be understood
in terms of its relationships without ambiguity.

© where a map is both a control hierarchy and a network
. of interacting objects.

The philosophy behind this approach is inherently
'~ reusable where reliable systems are defined in terms of
. reliable systems. Only reliable systems are used as build-
. ing blocks and only reliable systems are used as mecha-
| nisms to integrate these building blocks to form a new

= | system. The new system becomes a reusable for building

| other systems.
2| Every model is defined in terms of functional hier-
- archies (FMaps) to capture time characteristics, and type

1| hierarchies (TMaps) to capture space characteristics (Fig-

0 ure 1). FMaps and TMaps guide the designer in thinking
through his concepts at all levels of system design. With
these hierarchies, everything you need to know (no more,
no less) is available. All model viewpoints can be obtained
from FMaps and TMaps, including data flow, control
flow, state transitions, data structure, and dynamics.
Maps of functions are integrated with maps of types.

On an FMap there is a function at each node, which
is defined in terms of and controls its children functions.
For example, the function—build the table— could be
decomposed into and control its children functions—
make parts and assemble. On a TMap there is a type at
each node that is defined in terms of and controls its
children types. For example, type, table, could be decom-
posed into and control its children types, legs and top.

Every type on a TMap owns a set of inherited primi-
tive operations. Each function on an FMap has one or
more objects as its input and one or more objects as its
output. Each object resides in an object hierarchy
(OMap) and is a member of a type from a TMap. FMaps
are inherently integrated with TMaps by using these
objects and their primitive operations. FMaps are used to
define, integrate, and control the transformations of ob-
jects from one state to another state (for example, a table
with a broken leg to a table with a fixed leg). Primitive
operations on types defined in the TMap reside at the
bottom nodes of an FMap. Primitive types reside at the
bottom nodes of a TMap.

When a system has all of its object values plugged in
for a particular performance pass, it exists in the form of
an execution hierarchy (EMap).

Typically, a team of designers will begin to design a
system at any level (this system could be hardware, soft-
ware, peopleware or some combination) by sketching a
TMap of their application. This is where they decide on
the types of objects (and the relationships between these
objects) that they will have in their system. Often a Road
Map (RMap), which organizes all system objects includ-
ing FMaps and TMaps, will be sketched in parallel with
the TMap.

Once a TMap has been agreed upon, the FMaps
begin almost to fall into place for the designers because
of the natural partitioning of functionality (or groups of
functionality) provided to the designers by the TMap
system. The TMap provides the structural criteria from
which to evaluate the functional partitioning of the sys-
tem (for example, the shape of the structural partitioning
of the FMaps is balanced against the structural organiza-
tion of the shape of the objects as defined by the TMap).
With FMaps and TMaps a system (and its viewpoints) is
divided into functionally natural components and groups
of functional components that naturally work together;
a system is defined from the very beginning to inherently
integrate and make understandable its own real world
definition.

PRIMITIVE STRUCTURES

All FMaps and TMaps are ultimately defined in
terms of three primitive control structures: a parent
controls its children to have a dependent relationship, an
independent relationship, or a decision-making relation-
ship. A formal set of rules is associated with each primitive
structure. If these rules are followed, interface errors are
“removed” before the fact by preventing them in the first
place. As a result, all interface errors (75% to 90%
typically found during testing in a traditional develop-
ment) are eliminated at the definition phase. Using the
primitive structures supports a system to be defined from
the very beginning to inherently maximize its own elimi-

nation of errors.

Use of the primitive structures is

Function Map Type Map shown in the definition of the FMap for

=l Operation:ls_Full_Time 0| =] = Type Map;MFGCompany] =1] system, MakeATable (Fl'g’m'f 2). The

Fle EdL Ullilies Saale — File Edil_Ullilies Scale top node function has FLATwood and

Yh=Is_FullTime_Employment(EmpName, Migg) |2 B Al | | ROUNDwood as its inputs and pro-

colon I ghompany [l | duces Tableas its output. MakeATable,

Emps=Moveto:Employees(MgC) <€ TupleOf as a parent, is decomposed with a Join

Departments Employees. into its children functions, MakeParts

YN=Find_Emp_In_Set(EmpName,Emps) TupleOf ~ Employees and Assemble. MakeParts takes in as

LotateUsing:Nams Purchasing | Marketing. | input FLATwood and ROUNDwood

| Production. 03¢t0f from its parent and produces Top and
YN=Check_Emp_Payscale(Emp) | I3 p p

P Employee Legs as its output. Top and Legs are

0N b Moveto:PayScale(Emp) <€ —Tuplgll ~ given to Assemble as input. Assemble is

SHd e PSCe ame(sty) Skills. controlled by its parent to depend on

: , Oneof MakeParts for its input. Assemble pro-

FullTime(Rat) Hourly(Rat)] d Tabl : :
- - e 5 uces Table as outputand sends it to its
parent.
MakeParts, as a parent, is decom-

6. A COMPLETE SYSTEM DEFINITION is an integration of
FMaps that have been decomposed until reaching primitive functions on
types in the TMaps and TMaps that have been decomposed until reach-
ing primitive types.

posed into children, MakeLegs and
MakeTop, who are controlled to be
independent of each other with the In-
clude primitive control structure.

Thap:
Robalh “P‘““:s obors
ne
Tuple0l == /m\ ;
= ; Parls' 08ei0f
g AN ok - ' \Grinder' 10for
(Nal) pighujtime /. TurRate Tﬁ“‘;’ Parts Conveyorh g o7 A~
(Nal) (Nat) (Nat) Tlﬁml] / Dneol\
PutDownTime | = = put— Qulput
W ops AP ARG M) (il
(IOPort!)
FMaps: RA=Rotate Robot Arm (to,RAD) pS =
7 o Moveto:Poris:RobotA(RAD)
_Cumrute Rotation alP = Moveto:AtPori;Poris(Ps)
Time (RA1,end,start) 10Ps = Moveto:|0Poris:Ports(Ps)

RA1 = Moveto:RobotA:Parls(Ps1) start = StartingPosition(atP,|0Ps)

end,Ps1 = ResetTo_NewPort(Ps, ol0OPs)

RA=
Compute Rotation Time (RA1,end,start) start = StarlingPosition(atP,10Ps)

INJ 1072 Reeroiopartsatp o)
10P = Moveto:I0Poris(lOPs)
start = Position(I0P)
~
cn:islnpul:IUPun(IUQ
start = Moveto:output:I0Pori(I0P)
start = Moveto:Input:10Pori(IOP)
end = GetPorliD(to,Ps)

distance = Diff:Nat(end,start)
rate = Moveto:TurnRate:RohotA(RA1)
time = Mul:Nat(distance,rate)

RA = Replace:RoatationTime:RobotA(time,RA1)

end,Ps1 = ResetTo_NewPort(Ps,olOPs)

10PsN = Locate:I0Poris(end,I0Ps)
10PN = Moveto:10Ports(IOPsN)

Ps1 = Replace:AtPort:Ports(IOPN,Ps)

o \U Pls = Moveto:Porllds:Ports(Ps)

PISTM = TMap:Portlds(Pls)
end = Index_One0f(to,PIsTM)

7. ANY KIND OF SYSTEM can be defined with this language, includ-
ing software, hardware, and peopleware. RotateRotateARM is an exam-
ple of a hardware system defined in FMaps and TMaps.

MakeLegs takes in part of its parents input and MakeTop
takes in the other part. MakeLegs provides part of its output
(Legg) to its parent and MakeTop provides the rest. MakeTop
controls its children, FinishSoftWood and FinishHardWood
with an Or. Here, both children take in the same input and
provide the same output since only one of them will be
performed for a given performance pass. FinishSoftWood will
be performed if the decision function is:Soft, Wood returns
true; otherwise, FinishHardWood will be performed. Notice
that input (for example, FLATwood), is traceable down the
system from parent to children and output (for example,
Table), is traceable up the system from children to parent. All
objects in a development before the fact system are traceable.
MakeATables TMap, Table, uses non primitive structures
called parameterized types, a concept discussed in a later
section.

Each type on a TMap can be decomposed in terms of
primitive structures into children types where the defined
relationships between types are explicit. In Figure 3, Table as
a parent has been decomposed into its children, Top and
Legs, where the relations between Top and Legs are on-1
and on-2, respectively, the relation between Table and legs
is r-1 and the relation between Table and Top is 1-0. Notice
that Top depends on Legs to stand on to makea Table (Figure
3a). On the other hand, an independency relationship exists
between the front legs and the back legs of the Table (Figure
3b). The Table may have FrontLegs or BackLegs, or both
FrontLegs and BackLegs at once. In Figure 3¢, which illus-
trates a decision structure with objects, unlike with the
dependent and independent structures, the pattern of the

TMaps.

reusable patterns.

primitives.

OMap is always different than the
pattern of the TMap, since only
one object is chosen to represent
its parent for a given instance.

It can be shown thata system
defined with these structures re-
sults in properties that support
real-time distributed environ-
ments. Each system is event inter-
rupt driven. Each object is trace-
able, reconfigurable, and has a
unique priority. Each object has a
unique priority. Independencies
and dependencies can readily be
detected and used to determine
where parallel and distributed
processing is most beneficial.
With these properties, a system is
defined from the very beginning
to inherently maximize its own
flexibility to change and the un-
predictable and to capitalize on its
own parallelism.

DEFINED STRUCTURES

Any system can be defined
completely using only the primi-
tive structures, but less primitive
structures can be derived from the
primitive ones and accelerate the
process of defining and under-
standing a system. Non primitive
structures can be created for asyn-
chronous, synchronous, and in-

terrupt scenarios used in real-time, distributed systems.
Similarly, retrieval and query structures can be defined
for client-server database management systems. Non-
primitive structures can be defined for both FMaps and

Colnclude is an example of a system pattern that
happens often (Figure 4a). Its FMap was defined with
primitive structures. Within the Colnclude pattern,
everything stays the same for each use except for the
functions at leaf nodes A and B. The Colnclude pattern
can be defined as a non-primitive structure in terms of
more primitive structures with the use of the concept of
defined structures. This concept was created for defining

Included with each structure definition is the defini-
tion of the syntax for its use (Figure 4b). Its use (Figure
4c) provides a “hidden repeat” of the entire system as
defined but explicitly shows only the elements that are
subject to change (that is, functions A and B). The
Colnclude structureis used in a similar way to the
Include structure except with the Colnclude the user
has more flexibility with respect to repeated use, order-
ing and selection of objects. Each defined structure has
rules associated with it for its use just as with the
primitive control structures. Rules for the non-primi-
tives are inherited ultimately from the rules of the

Async, (Figure 5), is a real-time, distributed,
communicating structure with both asynchronous
and synchronous behavior. The Async system was

unm(SlankDﬂ%eaﬁng)nn-ﬂ
Dslelﬂl
is-1,0n-1(Bearing)on-0

J|CJ
on-1(Base)on-Basen,above-2 on-Balls,ahove-1(Cap)on-0

on-Basen,ahove-2(RetainerWithBalls)on-Balls,ahove-1

CC
above-2,has-n(Retainer)above-1
on-Basen(RelainerHolesWithBalls)on-Balls,has-n

Thap:

ISel:Ul
on-Baset, is-1(RetainerHoleWithBall)on-Ball has-1
GJ
contains(RetainerHole)has-1
on-Base1(Balls)on-Ball,contains
side view

8. EXPLICITLY DEFINED RELATIONS can
be used to take further advantage of the expressive
power of a TMap. Here, a TMap is used for defin-
ing a bearing manufacturing process.

definedwiththeprimitiveOr,Include,andJoinstructures
and the Colnclude user-defined structure. It cannot be
further decomposed, since each of its lowest level func-
tionsiseitheraprimitivefunctiononapreviouslydefined
type(seeldentify2:AnyandClonel:AnyunderEnd,each
of which isa primitive operation onany

+ different types of objects, OSetOf is a collection of a variable |
number of the same type of objects (in a linear order), and |
OneOfisa classification of possibly different types of objects
from which one object is selected to represent the class. ||
These parameterized types, along with TreeOf can be used | *
for designing any kind of TMap. TreeOf is a collection of
the same type of objects ordered using a tree indexing
system. With the use of mechanisms such as defined struc- |
tures, a system is defined from the very beginning to inher-
ently maximize the potential for its own reuse.
FMAPS, TMIAPS AND THEIR INTEGRATION
Figure 6 shows a complete system definition for a |

terms of an integrated set of FMap(s) and TMap(s). This
company could be set up to build tables with the help of
robots to perform tasks using structures such as those
defined above. Since this system is completely defined, it
is ready to be automatically developed to complete,
integrated, and fully production ready to run code.
i This system’s EMap, Is_FullTime_Employee, has been
' decomposed until it reaches primitive operations on
types in TMap, MfgCompany. (See for example,
. Emps=Moveto:Employees (MfgC) where MfgC is of
' type MfgCompany and Emps is of type Employees.)
' MfgCompany has been decomposed until its leaf
nodes are primitive types or defined as types that are
decomposed in another TMap.

System, Is_FullTime_Employee, uses objects
' defined by TMap, MfgCompany, to check to see if
' an employee is full or part time. First, a move is made
' from the MfgCompany type object, MfgC to an

type), recursive (see Async under Do-

More),oravariablefunctionforadefined
structure (seeAand Bunderprocess).Ifa
leafnode function does not fall into any
of these categories, it can be further de-
composed or it can refer to an existing
operationinalibraryoranexternalopera-
tionfromanoutsideenvironment.
DependentRobots uses Async as a re-
usable where TurnAndPlan and Move are

dependent, communicating, concurrent,

| Pty 4 CODODOODOOOEE
@0000000000_0"‘ .

synchronous, and asynchronous func-

ot e i iy

manufacturing company, which has been defined in s

tions. The two robots in this system are
working together to perform a task such
as building a table. Here one phase of the
planning robot, RB, is coordinated with
the next phase of the slave robot, RA.

Reusability can be used within a
TMap model by using parameterized
types. A parameterized type is a defined
structure that provides the mechanism to
define a TMap without its particular rela-
tions being explicitly defined. TMap Ta-
ble (Figure 2) uses a set of default parame-
terized types. Table as a parent type con-
trols its children types, Top and Legs, in
terms of a TupleOf parameterized type,
Legs controls its child, Leg, in terms of
OSetOf, and Wood controls Hard and
Soft with a OneOf. A TupleOf is a collec-
tion of a fixed number of possibly .

This Is A Happy Retirement

It's the peace of mind you get knowing you have saved
for the future. It's a U.S. Savings Bond. With just a little from
each paycheck, you can invest in Bonds through the Payroll
Savings Plan where you work. And they will keep earning
interest for up to 30 years. Make an investment in your future
with U.S. Savings Bonds today. Ask your employer for details.

U.S. Savings Bonds

A public service of this publication.

B

. Employees type object, Emps. The defined structure,
“ LocateUsing:NamefindsanEmployeebasedonaname.
—| Oncefound,amoveismadefromEmployee, EmptoPS |
== of type,
| YN-=is:FullTime(PS)isthenusedtodeterminefromPS

Payscale. The primitive operation |

if Emp is full time or parttime.
Each parameterized type assumes its own set of

' possible relations for its parent and children types. In
 this example, TMap, MfgCompany is decomposed

into Departments and Employees in terms of TupleOf.
Departments is also decomposed in terms of TupleOf
into Purchasing, Production and Marketing. Employ-

2 ees is decomposed in terms of OSetOf. One of the

children of Employee, PayScale, is decomposed in
terms of the parameterized type, OneOf.

Abstract types decomposed with the same parame-
terized type on a TMap inherit (or reuse) the same
primitive operations and therefore the same behavior.
So, for example, MfgCompany, Departments, and Em-
ployee inherit the same primitive operations from para-
meterized type, TupleOf. An example of this can be
seen in the FMap where both types, MfgCompany and
Employee, use the primitive operation, MoveTo which
was inherited from TupleOf.

Here each use of the MoveTo is an instantiation of
the Child = MoveTo:Child(Parent) operation of the Tu-
pleOf parameterized ~ type. For example,
Emps=MoveTo:Employees(MfgC) allows one to navi-
gate to an employee’s object from a MfgCompany object.
A type may be non-primitive (e.g., Departments), primi-
tive (e.g., FullTime as a rational number), or a definition
that is defined in another type subtree (for example,
Employees). When a leaf node type has the name of
another type subtree, either the child object will be
contained in the place holder controlled by the parent

; obJect (defined as, such as with Skills.) or a reference to
' an external object will be contained in the child place
holder controlled by the parent object (forming a relation
' between the parent and the external object).
UNIVERSAL PRIMITIVE OPERATIONS

The TMap provides universal primitive operations,
which are used for controlling objects and object states that
are inherited by all types. They create, destroy, copy, refer-
ence, move, access a value, detect, and recover from errors
and access the type of an object. They provide an easy way
to manipulate and think about different types of objects.

With the universal primitive operations, building sys-
tems can be accomplished in a more uniform manner.
TMap and OMap are also available as types to facilitate the
ability of a system to understand itself better and manipulate
all objects the same way when it is beneficial to do so.

TMap properties ensure the proper use of objects in an
FMap. A TMap has a corresponding set of control proper-
ties for controlling spatial relationships between objects.

One cannot, for example, put a leg on a table where
a leg already exists; conversely, one cannot remove a leg
from the table where there is no leg; a reference to the
state of an object cannot be modified if there are other
references to that state in the future; reject values exist in
all types, allowing the FMap user to recover from failures
if they are encountered.

The same types of definition mechanisms are used to
define RotateRotateArm, a hardware system (Figure 7), as
the software system above. Note that this system also in-
cludes the use of primitives for numeric calculation. In this
system, the rotation of the robot arm is calculated to move
from one position to another in a manufacturing cell to
transfer a part. In this example the universal operation (an
example of another form of reusable), Replace, is used twice.
Each use of a universal operation has function qualifiers that
select a unique TMap parent child combination to be

Hold

Arm
Controller:
INCLUDE:

§
TMap: ConlrolTree Infot

Controller. Controller. Unit.

Gripper
Unitt:

RightSide

Gripper
Unit2:

RCinfo Hold
Robot !
b Cun(l]rﬂuller: LeftSide
| :
K
RCinfo1

SensorUnit:
Sense

used during the application of the function.

Figure 8 has a definition that takes further ad-
vantage of the expressive power of a TMap with the
option of using explicitly defined relations. In this
example, a stack of bearings is described. A bearing
in the stack may be under (with relation on-0) or on
(with relation on-1) another bearing object in the
stack as defined by the DSetOf structured type. A
bearing object is decomposed into a Cap, a Retain-
erWith Balls, and a Base. Object relationships at this
level show that the Cap is above the RetainerWith-
Balls, which is in turn above the Base. Further detail
reveals that a Retainer has (with the has-n relation)
some number of RetainerHoleWithBall. The set of

(Tre0f) RetainerHoleWithBall objects are independent of
| each other, defined by the ISetOf structured type.

ContrlNod y : P
0?0:10&010) g This structure allows for physically independent
ImageUnit: relations on the objects in the set. Here, different
Rifot M:llgl?es portions of the Cap surface are independently
Controller, s related (with the on-Balls relation) to each indi-

Sensor Am Gripper i vidual Ball object (with the on-Ball relation).

As experience is gained with different types of

9. A SECOND ORDER CONTROL SYSTEM bhas
been derived that parallels the primary control system to
form a powerful set of reusables for defining hierarchies

of interruptible, asynchronous, communicating, distrib-
) <

uted controllers.

applications, new reusables emerge for general or
specific use. For example, a set of reusables has been
derived to form a higher level set of mechanisms for
defining hierarchies of interruptible, asynchronous,
communicating, distributed controllers. This is es-

sentially a second order control system (with rules that
parallel the primary control system of the primitive struc-
tures) defined with the formal logic of user defined
structures that can be represented using a graphical syntax
(Figure 9).

In such a system, each distributed region is coopera-
tively working with other distributed regions and each
parent controller may interrupt the children under its
control. In this example, the robot controller may
apply an arm controller or a sensor controller. If the
arm controller is activated, the two grippers may con-
currently, using an Include, hold two ends of some
object. If the sensor controller is activated, a sensor
unit senses some image followed, using a Join, by an
image unit matcher. These reusables can also be used
to manage other types of processes such as those used
to manage a software development environment.
PERFORMANCE CONSIDERATIONS

When designing a system environment, it is important
to understand the performance constraints of the functional
architecture and to have the ability to rapidly change con-
figurations. A system is flexible to changing resource require-
ments if the functional architecture definition is separated
from its resource definitions. To support such flexibilicy with
the necessary built-in controls, with development before the
fact, the same language is used to define functional, resource,
and allocation architectures. The meta-language properties
of the language can be used to define global and local
constraints for both FMaps and TMaps. Constraints, them-
selves, can be defined in terms of FMaps and TMaps. If we
place a constraint on the definition of a function (for
example, Where RobotA takes between 2 and 5 seconds),
then this constraint influences all other functions that use
this definition. Such a constraint is global with respect to
the uses of the original function.

Global constraints of a definition may be further
constrained by local constraints placed in the context of
the definition that uses the original function definition
(for example, where function RobotB uses F Where F
takes 3 seconds). Function F could have a default con-
straint which holds for all uses such as Where Default:3
seconds. If, however, RobotB is defined to take 2 seconds,
then RobotB overrides E The validity of constraints and
their interaction with other constraints can be analyzed
by either static or dynamic means. The property of being
able to trace an object throughout a definition supports
this type of analysis. This property provides the ability to
collect information on an object as it transitions from
function to function. As a result, one can determine both
the direct and indirect effects of functional interactions
of constraints.

FUNCTION-ORIENTED, OBJECT-ORIENTED

A development before the fact system is by its very
nature an integration of being function oriented and
being object oriented from the beginning. The definition
space is a set of real-world objects, defined in terms of
FMaps and TMaps.

Objects, instantiations of TMaps, are realized in
terms of OMaps. An execution, an instantiation of an
FMap, is realized in terms of an EMap. Building block
definitions that focus more on objects than on func-
tions are independent of particular object-oriented
implementations. Properties of classical object- ori-

ented systems such as inheritance, encapsulation, poly-
morphism, and persistence are supported with the use of
generalized functionson OMapsand TMaps.

The development before the fact approach derives
from the combination of steps taken to solve the prob-
lems of the traditional “after the fact approach.” Col- |
lective experience strongly confirms that quality and
productivity increase with the increased use of devel-

opment before the fact proper-
ties. A major factor is the inher-
ent reuse in these systems, cul-
minating in ultimate reuse,
which is automation itself.

From FMaps and TMaps

any kind of software system can

be automatically developed, re-
sulting in complete, integrated,
and production-ready target-
system code and documenta-
tion. This is accomplished by the
001 Tool Suite, an automation of
the technology that will be dis-
cussed in an article in the June 13
issue of this Soffware Engineering
Supplement of ELECTRONIC
DESIGN. The tool suite also can
observe the behavior of a system
as it is being evolved and exe-
cuted in terms of OMaps and
EMaps. The article will discuss
some of the systems that have been
designed and developed with this
paradigm in a wide range of envi-
ronments, including manufactur-
ing, aerospace, software tool devel-
opment, database management,
transaction processing, process
control, simulation, and domain
analysis.ES

Margaret H. Hamilton
is CEO of Hamilton
Technologies Inc.
(HTT), Cambridge,
Mass., which provides
systems engineering
and software develop-
ment products. Before
this, she was CEO of
Higher Order Soft-
ware, responsible for
the development of
the first comprehen-
sive CASE tool. Ear-
lier, as the head of
Software Engineering
at MIT's Draper Lab,
she was the director
of the Apollo on-board
flight software project
and created Higher Or-
der Software, a sys-
tems design theory.

REFERENCES

M. Hamilton, “Zero-Defect Software: the FElusive
Goal,” IEEE Spectrum, vol. 23, no. 3, pp. 48-53,
March, 1986.

M. Hamilton and R. Hackler, 001: “A Rapid Develop-
ment Approach for Rapid Prototyping Based on a System
that Supports its Own Life Cycle,” IEEE Proceedings,
First International Workshop on Rapid System Prototyp-
ing, Research Triangle Park, NC, June 4, 1990.

B. McCauley, “Software Development Tools in the
1990s,” AIS Security Technology for Space Operations
Conference, July 1993, Houston, Texas.

B. Krut, Jr., “Integrating 001 Tool Support in the Feature-
Oriented Domain Analysis Methodology” (CMU/SEI-93-
TR-11, ESC-TR-93-188), Pittsburgh, Software Engineer-
ing Institute, Carnegie Mellon University, 1993.

Software Engineering Tools Experiment-Final Report, Vols.
1, Experiment Summary, Table 1, Page 9, Department of
Defense, Strategic Defense Initiative, Washington, D.C.,
20301-7100.

Copyright © 1994 by Penton Publishing, Inc., Cleveland, Ohio 44114

 HistoryItem_V1
 AddMaskingTape

 Range: From page 10 to page 10
 Mask co-ordinates: Left bottom (17.97 -138.32) Right top (788.95 11.21) points

 0
 17.9667 -138.3163 788.9456 11.2069

 10
 SubDoc
 10

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 8 to page 8
 Mask co-ordinates: Left bottom (17.97 -138.32) Right top (793.62 7.47) points

 0
 17.9667 -138.3163 793.6182 7.4688

 8
 SubDoc
 8

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 7 to page 7
 Mask co-ordinates: Left bottom (17.97 529.87) Right top (788.01 678.45) points

 0
 17.9667 529.8654 788.011 678.454

 7
 SubDoc
 7

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 5 to page 5
 Mask co-ordinates: Left bottom (17.97 -138.32) Right top (763.71 14.94) points

 0
 17.9667 -138.3163 763.7135 14.9449

 5
 SubDoc
 5

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (17.97 530.80) Right top (782.40 678.45) points

 0
 17.9667 530.7999 782.4039 678.454

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 2 to page 2
 Mask co-ordinates: Left bottom (17.97 -138.32) Right top (793.62 10.27) points

 0
 17.9667 -138.3163 793.6182 10.2724

 2
 SubDoc
 2

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 1
 1

 1

 HistoryList_V1
 qi2base

