Qﬁ ORIAL SUPPLEMENT
1%‘55]\~] Jlidl?hl%tlliﬁ\]‘[;;
5
}
FOR SOFTWARE DE SIﬁN ENGINEERS |

; =
- THE SOFTWARE B A

- DEVELOPMENT Wt
‘ EN\IIHONMENT o

BETTER N
" EMBEDDED DSP. K
DEVELOPMENT ..

- Improving £ SgN#e
host-targel \NIBEEL
- 0mmunicationg

 SOFTWARE G

- REUSE
- Making the
l‘ coneept work

. SYSTEMS ENGINEE
- AND SOFTWARE
l DEVELOPMENT
b

N
““““
.t

‘Development before
. the fact” in action

001: A FULL
LIFE CYCLE

' BY MARGARET H. HAMILTON

Hamilton Technologies Inc.

SYSTEMS ENGINEERING

AND SOFTWARE
DEVELOPMENT
ENVIRONMENT

Development
Before The Fact

In Action

OFTEN, THE ONLY WAY TO SOLVE
MAJOR ISSUES OR TO SURVIVE
TOUGH TIMES IS THROUGH
NON-TRADITIONAL PATHS OR
INNOVATION. THIS CAN BE AC-
COMPLISHED BY CREATING NEW
METHODS OR NEW ENVIRON-
MENTS FOR USING NEW METH-
ODS. THE ANSWERS FOR SUC-
CESS MAY WELL EXIST WITHIN

our mistakes or problems. The first step
is to recognize the true root problems,

which can then be categorized in terms of how to prevent them in the future.
This is followed by deriving practical solutions. The process is then repeated by
looking for new problem areas in terms of the new solution environment and
repeating the same problem-solving scenario.

The development before the fact approach was derived from the combina-

Definition space Definitions are connected
= hy labled tree leafs
FMaps B A TMaps T
C M B P T2 T2
C ;o
/<\ S omom
Primilive lypes: -‘ =
PT1..PTh. | A
Execution space ' /. EMap \‘x
£l | ,/ allimestep2 A
attime step 1 A /
/\V
B P2 B
/\ OMap < /
C P2 G
P3
0Map (_E OMap ——
AN

tion of steps taken to solve the problems of traditional
systems engineering and software development. What
makes development before the fact different is that it
is preventative instead of curative (see “Inside Develop-
ment Before the Fact, ” Electronic Design, April 4, 1994,
p- 8 ES).

Consider such an approach in its application to a
human system. To fill a tooth before it reaches the stage
of a root canal is curative with respect to the cavity,
but preventative with respect to the root canal. Pre-
venting the cavity by proper diet is not only preventa-
tive with respect to the root canal but for the cavity as
well. The scenario with the cavity followed by the root
canal is the most expensive; the one with the cavity
that was fixed on time is the next most expensive; and
the one where there was no cavity is the least expensive.

The act of being preventative is a relative concept.
The idea is to prevent any thing that could go wrong
in the life cycle that would later need to be fixed up
after it was done incorrectly (or allowed to become
incorrect due to negligence). For any given system, be
it a human or software one, the goal is to be preven-
tative to the greatest extent and as early as possible.

Each development before the fact system is de-

1. THE DEFINITION space is defined in terms
of FMaps and TMaps and the execution space in

fined with properties that control its own design and
development throughout its life cycle(s) where the life
cycle, itself, is an evolving system that could be defined
and developed as a target system using this approach.

terms of OMaps and EMaps. OMaps (rvepresenting An emphasis is placed on defining things with the

objects) are instantiations of TMaps; EMaps (repre-
senting executions) are instantiations of FMaps.

right methods the first time, formally preventing
problems before they happen. Both function and ob-

ject-oriented, it is based upon a unique concept of con-
trol.

From the very beginning, a system inherently inte-
grates all its own objects (and all aspects, relationships and
viewpoints of these objects) and the combinations of
functionality using these objects; maximizes its own reli-
ability and flexibility to change (including reconfigura-
tion in real time and the change of target requirements,
static and dynamic architectures, and processes); capital-
izes on its own parallelism; supports its own runtime
performance analysis; and maximizes the potential for its
own reuse and automation. It is defined with built-in
quality and built-in productivity.

This is in contrast to traditional environments that
support their users in fixing wrong things up or in
performing tasks that should no longer be necessary
instead of doing things right in the first place. As a result
things happen too late if at all (i.e., after the fact). This
article will discuss an automation of the development
before the fact systems engineering and software develop-
ment approach, which was described in the April 4 issue.
This article also discusses practical experience in the
design and development of systems using this approach.
Development before the fact includes a language, a tech-
nology, and a process (or methodology), all of which are
based upon a formal theory.

THE PROCESS

To review the process, the first step in building a
before the fact system is to manage the system by config-
uring the process management environment. The next is
to define a model. This model could be for any kind of
application. The model is automatically analyzed, stati-
cally and dynamically, to ensure that it was defined
properly. Management metrics are collected and ana-
lyzed.

If the analysis process finds an error, control is re-
turned to the definition process. If there

fact is the language. The definition space is a set of real
world objects (Figure 1). Every model is defined in terms
of functional maps (FMaps) to capture time charac-
teristics and type maps (TMaps) to capture space charac-
teristics. A map is both a control hierarchy and a network |
of interacting objects. Maps of functions are integrated
with maps of types. FMaps and TMaps guide the designer
in thinking through his concepts at all levels of system
design. The execution space is the realization of FMaps
and TMaps in terms of EMaps and OMaps. OMaps
(representing objects) are instantiations of TMaps and
EMaps (representing executions) are instantiations of |
FMaps.

The duality of FMaps and TMaps is always present.

~Every type is associated with a node of a TMap, every

function with a node of an FMap. Primitive types reside
at the bottom nodes of a TMap; primitive functions
(where each primitive function is a use of a primitive
operation of a type in a TMap) are at the bottom of an
EMap. Each type is defined in terms of its children types.
All types are therefore ultimately defined in terms of
primitive types. Each function is defined in terms of its
children functions. All functions are therefore ultimately
defined in terms of primitive functions.

Each type has a set of primitive operations associated
with it. A set of operations for a non-primitive data type
is inherited from the particular parameterized type used
to decompose the non-primitive type into its children. A
set of operations is included with each primitive type. A
set of operations for a primitive type is implemented in
terms of FMaps and TMaps (or it could be implemented
in some other language such as the native language of the
computer). Whereas an FMAP uses types defined in
terms of TMaps to define the behavior of its inputs and
outputs, a TMap uses functions (defined in terms of
FMaps) to define the behavior of its types.

are no errors, a fully production-ready
and fully integrated software implemen-
tation, consistent with the model, is then
automatically generated by the generic
generator for a selected target environ-
ment in the language and architecture of

System engineering:

Deiilne FMaps and TMaps

Analyze
Simulate real-time behavior and performance

(re) Define
FMaps & TMaps
with 001 Axes

; : Xeculor
choice. If the selected environment has () Vi
% iron- | Software development; anagefirace
ahead}r been con'ﬁgured,. that environ S FMapsz?n i Haps Hiilieens o
ment is selected directly; if not, the gen- | pngyze metrics with RT(x)

erator is configured for a new language
and architecture before it is selected. The
resulting system can then be executed. It
becomes operational after testing.

Target changes are made to the defi-
nition, not to the code. Target architec-
ture changes are made to the configura-
tion of the generator environment, not to
the code. Once a system has been devel-
oped, the system and the process used to
develop it are analyzed to understand
how to improve the next round of system
development. The process is evolved be-
fore proceeding through another itera-

Generate complete and production ready code
Execute on target machine

Design changes and maintenance:
Revise FMaps and Thiaps
Repeat system engineering
or software development process

FMaps & TMaps
with Analyzer

Execute
with machine
or Xecutor

Management:
Organize projects into working libraries
Manage and trace requiremenls
Generate product and process metrics
Generate specification, design and est documentation

Generale
from FMaps &
TMaps with RAT

tion of system engineering and software 2. THE 001 TOOL SUITE is an integrated systems engineering and soft-

development.

ware development environment. An automation of the development be-

The key to development before the Sfore the fact approach, it was used to define and generate itself:

Properties of classical ob-
'~ ject-oriented systems such as in-
heritance, encapsulation, poly-
morphism, and persistence are
introduced with the use of
TMaps. Special object-oriented
operators can be created by the
user as reusables with support
from Type, OMap and Type,
TMap. Type, OMap allows the
user to treat any object as a ge-
neric object when it is desirable
to do so such as finding out
about the relationships of an ob-
ject. Type, TMap allows the user
to make queries about an ob-
jects type such as the context
within which it is being used.
For example, a wheel can deter-

Abstract
manager (n)

000

Abstract
manager (1)

Specification
layer

mine if it belongs to a truck or a
plane. Those building-block
definitions, which focus more
on objects than on functions, are
independent of particular object-
oriented implementations.

The 001 tool suite, an automation of development
before the fact, is a full life cycle systems engineering and
software development environment encompassing all
phases of development. It begins with the definition of the
meta process and the definition of requirements (Figure 2).
From FMaps and TMaps any kind of system can be
designed and any kind of software system can be auto-
matically developed, resulting in complete, integrated,
and fully production-ready target system code (or docu-
mentation) configured for the language and architecture
of choice. The tool suite also has a means to observe the
behavior of a system as it is being evolved and executed
in terms of OMaps and EMaps.

Every system developed with the tool suite is a
development before the fact system. Since the tool

3. EACH NODE on an RMap represents an object (this object could be
an FMap, TMap, or another RMap) being managed by a manager, a con-
figuration of Manager(x). Manager(x) is based on the VSphere technology,
which provides the means to define any relationship(s) between any objects.

. FMaps and TMaps and then install them into Man-

The Requirements Traceability (RT(x)) tool, a sub-
system within the tool suite that is also a Manager(x)
configuration, provides users with more control over
their own requirements process. RT(x) generates metrics
and allows users to enter requirements into the system
and trace between these requirements and corresponding
FMaps and TMaps throughout system specification, de-
tailed design, implementation, and final documentation.
The purpose of a manager is to coordinate user activities
with objects on the abstract layer, which is appropriate
for the users domain of interest. Each object being man-
aged has an outside and an inside view. This allows a user

suite was used to define and generate itself, it is a
development before the fact system. Although the
tool suite is a full life cycle design and develop-
ment environment, it can coexist and interface
with other tools. The tool suite can be used to
prototype a system and/or to fully develop that
system. A discussion of its major components
follows.
MANAGEMENT

The generalized manager, Manager(x), is that
part of the tool suite that allows users to tailor their
own development environment. It is based on the
Virtual Sphere (VSphere) capabilities, also a part
of the tool suite. VSphere supports a layered sys-
tem of interactive, user-definable, distributed hi-
erarchical abstract managers. Since the tool suite
is a Manager(x) configuration, users can extend
the tool suite environment itself. For users, these

extensions might be interfaces to other tools in
their environment or tools that they design and
develop with the tool suite to provide automations

4. WITH THE RT(X) manager, user requirements in any
form can be entered into the 001 environment, providing user
configurable life cycle management, requirements traceability

to support their specific process needs. To tailor a znd metrics gathering. These requirements are artached to the
manager, users define their process needs with target system’s Road Map, which is used to manage the system.

to manage objects from an outside layer with a viewpoint
that hides the internal details of the object being man-
aged. For example, a user who is responsible for knowing
that his requirements are satisfied may not need to know
the details of the interconnections between requirements
and the target system components that satisfy those re-
quirements.

USING VSPHERE

With VSphere, Manager(x) can provide object rela-
tions that are explicitly traceable. A user can define any
relationship between objects and describe the complex
dependencies between these objects. This provides the
user the ability to query on those relationships. The
relationships between a set of requirements and its sup-
porting implementation is an example. Although
VSphere supports Manager(x) in providing a user callable
and distributable object management system layer, a user
can directly use VSphere as a data type from within his
applications to provide control and distribution of his
objects. This also allows the user’s application to behave
as an object manager for users of that user’s application.

A default set of general-purpose interactive manage-
ment functions with a default interactive graphical rep-
resentation is available with Manager(x). Graphical
methods are used for representing and entering informa-
tion. Users can override default functions with their own
tailor-made functions or extensions to the defaults pro-
vided. By default, a development before the fact process
model is supported with the tool suite (e.g., evolve,
define, analyze, resource allocate, execute). A manager’s
basic functions include: 1) extension: a user may extend
the life-cycle development process object types, which
may be managed and their associated primitive opera-
tions, which a manager may control. These extended
object types are defined in terms of other object types; 2)
evolution by abstraction: a user may import an existing
representation into the definition language form; 3) defi-
nition: a user may create, delete, and modify object
instances of these user extended object types; 4) analysis:
a user may define analysis functions that result in status
changes to objects (i.e., consistency and completeness);
5) resource allocation: a user may define transformation
functions to generate forms of information in terms of a
resource about the system of objects. Such transforma-
tions may include generation of code, English or man-
agement metrics; 6) execution: the user may run and test
executable systems from within a manager’s environment;
and 7) general support: a user has a general-purpose set
of interactive functions (e.g., searching, navigation,
schedule notification, or event notification).

The requirements for ideal systems engineering and
software development are defined as part of the develop-
ment before the fact paradigm. The tool suite with Man-
ager (x) provides the user the capability and flexibility to
fulfill these requirements with alternative specifications.
The tool suite configuration of Manager(x) is provided
as a default to its users. With this configuration, the tool
suite includes besides Manager(x) itself, the Session Man-
ager for managing all sessions, the Project Manager for
managing all projects, the Library Manager for managing
libraries within one project, and the Definition Manager
for managing definitions within a library.

The Definition Editor of the Definition Manager is

|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
I
|
|
1
|
|
|
|
|
|
!
|
|
I
1
|
1
|
1
|
|
|
|
|
|
|
|
|
|
1
|
|
|
!
1
|
1
|
|
|
1
|
1
!
1
1
1
1
|
|
I
|
|
1
i
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
I
|
|
|
|
'
|
|
|
|
|
1
|
1
1
1
I
|
|
|
!
|
|
|
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
'
|
1
|
|
|
|
1
I
1
I
1
|
|
|
|
|
|
|
|
|

used to define FMaps and TMaps in either graphical or
in textual form. Each manager manages a Road Map
(RMap) of objects, including other managers, to be
managed (Figure 3). An RMap provides an index or table
of contents to the user’s system of definitions and sup-
ports the managers in the management of these defini-
tions, including those for FMaps, TMaps, defined struc-

tures, primitive data types, objects brought in from other = -~

environments as well as other RMaps. Managers use the |
RMap to coordinate multiuser access to the definitions

of the system being developed. Each RMap in a system = .. |

is an OMap of the objects in the system used to develop |
that system within each particular managers domain. The
Road Map Editor is used to define RMap hierarchies.

Definitions are submitted to the Structure Flow
Calculator to automatically provide the structures and an
analysis of the local data flow for a given model. At any
point during the definition of a model, it may be submit-
ted to the Analyzer, which ensures that the rules for using
the definition mechanisms are followed correctly.
GENERATION

When a model has been decomposed to the level of
objects designated as primitive and successfully analyzed,
it can be handed to the Resource Allocation Tool (RAT),
which automatically generates source code from that
model. The RAT is generic in that it can be configured
to interface with language, database, graphics, clientserv-
er, legacy code, operating system, and machine environ-
ments of choice. The Type RAT generates object type
templates for a particular application domain from a
TMap(s).

The Functional RAT generates source code from an
FMap(s). The code generated by the Functional RAT is
automatically connected to the code generated from the
TMap and code for the primitive types in the core library,
as well as, if desired, libraries developed from other environ-
ments (because of the tool suite’s open architecture it can be
configured by the user to generate code to interface with
outside environments). To maintain traceability, the source
code generated by the RAT has the same name as the FMaps
and TMaps from which it was generated.

SimDB (Tupl<Of:3)

Machings (O=et0l) ReadyQ (TupleOf :2)

chine.

Machin,

5. THE DEFINITION EDITOR is used to create
FMaps and TMaps to define the system. The system is
analyzed with the Analyzer.

The generated code can be compiled and executed
on the machine where the tool suite resides (the tool suite
currently runs on the HP 700 series, IBM RS 6000,
'~ SunOS 4.X/Solaris, and Digital Alpha Unix, X Window,
. Motif, C, and Ada environments); or, it can be ported to
other machines for subsequent compilation and execu-

" ton. User-tailored documents and metrics, with select-
~ able portions of a system definition, implementation,

' description and projections (e.g., parallel patterns, deci-

= sion trees and priority maps) can also be configured to be
- automatically generated by the RAT. Once a system has

- been RATted, it is ready to be compiled, linked, and
| executed.

The RAT provides some automatic debugging in
that it generates test

with the number in it or a dial that can be turned to the
desired value. In addition, advanced users can add new
ones. Datafacer produces forms-entry screens, much like
conventional database screen painters, but supports the
full semantic capabilities of TMap. It will generate
screens for arbitrary depth type hierarchies and has full
support for parameterized types OrderedSetOf, TreeOf,
OneOf and TupleOf. The developer has control over the
data that may be viewed or modified by the user. Data in
the OMap may be reorganized, specified as view-only or
completely hidden from the user.

Using data type DFACE (the API to Datafacer
functions) the developer has complete control over visu-
alization and data modification from within his applica-

tion. Here, the developer

code, which finds an ad-
ditional set of errors dy-

can add functions to cap-
ture runtime data events

namically (e.g., it would
not allow one to put an
engine into a truck if it
already had one or try to

(like trigger functions),
petform constraint
checking, data analysis
and specialized graphics

take an engine out of a

manipulations. Besides

truck if it had no engine).
The developer is notified
of the impact in his sys-
tem of any changes and
those areas that are af-
fected (e.g, all FMaps
that are affected by a
change to a TMap) are
demoted.
CONTROLLED
VISUALIZATION

data specification, the
developer has access to
many graphical configu-
ration options. Some of
these may be carefully
controlled while others
may be left for users to
change. A common capa-
bility allows end users to
save the locations and
sizes of their windows be-

The next step is to
execute/test the system.
One tool to use in this
step is Datafacer, a run-
time system that auto-
matically generates a user
interface based on the
data description in the TMap. In the development of
systems, Datafacer can be used in two major ways: as a
general object viewer and editor and as a full end-user
interface. The tool suite automatically generates a unit
test harness incorporating Datafacer as a default test data
set and data entry facility for subsystem functions being
developed. Datafacer chooses appropriate default visuali-
zations for each data item to be displayed. For a specific
OMap, it manages the visualization of specific data values
for the user and the modification of the OMap by the
user with its OMap Editor.

The TMap is the repository for information about
the structure of data and it implies the operations that
may be performed on it. The visualization of data created
from the TMap consists of interface elements that display
the values in the OMap and interface elements that
trigger primitive functions on those values. For example,
an ordered set might be depicted as a list, with buttons
for insert and extract; a Boolean might be visualized as a
toggle switch.

For each primitive and parameterized type, there are
a group of modes of visualization from which to choose.
For example, a number can be visualized as a text item

6. INTEGRATED, COMPLETE and fully production-
ready code for any kind of system can be generated by the
RAT. The RAT, currently configured to generate C, Ada,
Fortran, and English, can be configured to generate to any
architecture including any language, graphics, OS, data-
base, communications protocol,

|
|
!
|
|
|
|
1
|
|
|
1
|
il
|
|
!
|
|
|
|
1
|
1
|
|
|
|
|
!
|
|
|
|
1
|
|
1
|
|
|
1
1
|
|
|
|
|
'
|
1
|
|
|

tween sessions.

Datafacer focuses on
several basic principles:
Many applications center
around the display and
modification of data; the
visualization of data
structures may be generated and managed automatically
by understanding the semantics of the data description;
the automation is made useful by a wide array of configu-
ration avenues, for both the developer and end user; and
the system may be configured in many ways. A set of
reasonable defaults is always provided that allows rapid
prototyping and gives the developer a concrete starting
point.
SIMULATION

The Xecutor executes directly the FMaps and
TMaps of a system by operating as a runtime executive,
as an emulator or as a simulation executive. As an execu-
tive, the Xecutor schedules and allocates resources to
activate primitive operations. As an emulator of an oper-
ating system, the Xecutor dispatches dynamically bound
executable functions at appropriate places in the specifi-
cation. As a simulator, the Xecutor records and displays
information. It understands the realtime semantics em-
bedded in a 001 definition by executing or simulating a
system before implementation to observe characteristics
such as timing, cost, and risk based upon a particular
allocation of resources. If the model being simulated by
the Xecutor has been designed to be a production soft-

and legacy code.

DO_1035_ON_CUELE

COMPUTE_J08 TWE

tre=adirataret tre, ser)
aernre]

feerl=patimeTen et 1)

Caicuiator

Manoger

visualization of the OMap being edited, configured |
by the user, is also shown (upper right). -

process is automated within each phase and between |
phases beginning when the user first inputs his

same language and the same tools can be used |

independent. A system can be automatically “RAT-
ted” to various alternative implementations without
changing its original definition.

Traceability is backwards and forwards from the
beginning of the life cycle to implementation to
operation and back again (for example, the gener-

7. THE XECUTOR runs the EMaps and TMaps in the
form of EMaps (instantiations of FMaps) and OMaps (in-
stantiations of TMaps). With the Xecutor simulator, the be-

havior and performance of a system can be analyzed.

ware system, then the same FMaps and TMaps can be
RATted for production. The Xecutor can be used to
analyze processes such as those in a business (enterprise
model), manufacturing or software development envi-
ronment (process model) as well as detailed algorithms
(e.g., searching for parallelism).

The Baseliner facility provides version control and
baselining for all RMaps, FMaps, TMaps, and user-de-
fined reusables, including defined structures. The Build
Manager configuration control facility’s primary role is to
manage all entities that are used in the construction of an
executable. This includes source files, header files, and
context information about the steps taken to produce the
executable. This facility also provides options for control-
ling the optimization level, debugging information, and
profiling information of the compiled code.
EXAMPLE DEVELOPVMENT SCENARIOS

Figures4, 5, 6, and 7 show excerpts of a development
scenario starting with the definition of requirements in
the form of a user’s English document from which key
expressions (e.g., “fire-fighting system”) and key words
(e.g., “shall”) are filtered (Figure 4). Those statements
with the key words and expressions can then be attached
to the RMap along with information of the user’s choice
for the purpose of establishing traceability and gathering
metrics throughout the life cycle. Reusables can be used
to fulfill some of the requirements associated with the
nodes on the RMap. For others, some FMaps and TMaps
may already have been defined for this system. Others are
yet to be defined.

The next step is to define and analyze FMaps and
TMaps (Figure 5), continuing with the automatic genera-
tion of production ready code for C and Ada and the
generation of English (Figure 6). This is followed by a
session with the CPU runtime environment for testing
and deployment or the Xecutor which shows the system
being executed by running the FMaps (resulting in
EMaps) and TMaps (resulting in OMaps) along with the
resources being used by them (Figure 7).

In another session (Figure 8), Datafacer is being used

ated code has names corresponding to the original
requirements). Traceability also exists upwards and
downwards since requirements to specification to
design to detailed design is a seamless process. A
primitive in one phase (e.g., requirements) becomes
the top node for a module in the next lower level phase
(e.g., specifications). The tool suite takes advantage of the
fact that a system is defined from the very beginning to
inherently maximize the potential for its own automat-
ion.
RESULTS

Many systems have been designed and developed
with this paradigm. Some of these systems were from the
systems engineering domain and some were from the
software development domain; others were a combina-
tion of both. The definition of these systems began either
with the process of defining the original requirements or
with requirements provided by others in various forms.
The process varied from one extreme of interviewing the
end user to obtain the requirements to the other of
receiving written requirements. These systems include
those that reside within manufacturing, aerospace, soft-

to edit an OMap (lower left) based upon TMap, |
Employees (upper left). An alternative Datafacer |

With the use of the tool suite, a development =

thoughts and ending when testing his ideas. The | =l

throughout all phases, levels and layers of designand =/
development. There are no other languages or tools = ="~
to learn. Each development phase is implementation =7

put object EmployeeDB of type EMPLOYEES

8. DATAFACER can be used as an object viewer, object
editor; or as a full, end-user interface. It produces forms-entry
screens that can be configured by the user. It automatically gener-

ates a user interface supporting the semantic capabilities of TMap.

ware tool development, database management, transac-
tion processing, process control, simulation, communi-
cations, domain analysis, and database management en-
vironments.

One system developed with 001 is the 001 tool suite
itself. Approximately 800,000 lines of code were auto-
matically generated for each of four platforms by the tool
suite to create itself. The tool suite generated itself in C
for its production version. It has generated portions of

itself in Ada for purposes of testing aspects of Ada. Over
7 million lines of code have been generated by the tool
suite to generate all of its three major versions on these
platforms. Contained within the tool suite are many
kinds of applications, including database management,
communications, client server, graphics, software devel-
opment tools, and scientific applications. All of the tools
within the tool suite are inherently integrated as part of
the same system.

The OpenINGRES Object Generator, a database
management system, is an example of a system developed
with 001 that has parts of the 001 tool suite embedded
within it, including portions of Datafacer. It is an inter-
active tool for application developers who need to imple-
ment encapsulated objects as new data types within the
OpenINGRES database.

Recently, the tool suite was part of an experiment
sponsored by the National Test Bed (NTB). The NTB
provided the same problem to each of three contrac-
tor/vendor teams. The application was real-time, distrib-
uted, multi-user, client server, and was required to be

defined and developed under government 2167A guide-
lines. All teams successfully completed the definition of
preliminary requirements, two teams continued on to
successfully complete detailed design and one team, the
001 team continued on to automatically generate com-
plete and fully production-ready code; a major portion
of this code (both C and Ada were generated from the
same definitions) was running in both languages at the
completion of the experiment.

ANALYSIS OF RESULTS

We have analyzed our results on an ongoing basis to
understand more fully the impact that properties of a
system’s definition have on the productivity in its devel-
opment. Productivity was analyzed with several systems
and then documented. Compared to a traditional C
development where each developer produces 10 lines of
code a day, the productivity of the 001 developed systems
varied from 10 to 1 to 100 to 1. Upon further analysis,
unlike with traditional systems, the larger and more
complex a system, the higher the productivity. This is in
major part because of the high degree of reuse on larger
systems.

Figure 9 shows the development before the fact
systems engineering and software development environ-
ment with a focus on its open architecture aspects. This
environment provides a new set of alternatives for disci-
plines associated with the traditional development proc-
ess. Take for example, reverse engmeerlng Redevelop-
ment is a more viable option, since a system can be

' developed with higher reliability and productivity than

Reverse engineering

Legacy code Requirements capture

Automatically generated documentation

User-customizable formats

Requirements analysis
Functional specifications
Design documents
DOD-STD-2167A

Metrics

Configuration management

Document parsin
Intormafenis e Automatically generated code
& (Inputs from other tools) gl_(egygled&/cﬂmplljia/le &I production-ready
Pt 2 istributed/shared/real-time
Y U v e
—— User-interface
001 axes Communications
Scientific
Networking
TCPP Analyzer ¢
B | Graphics/Gul —> -
DIS Motif/Xi/Xlib Resource Allocation eouor
PHIGS/PEX ¥ Tool (RAT)
GKS DBMS >
Custom | pistrifuted
glgent/sl;ar\mlrj Real/time/
ject-hase fi distributed
SaL gg:el,%tt'{:: Igioutplt system simulation
General C, Ada, Dynamig behavior
Legacy code English, Time, cost, I'ISk F
Portable standared libraries Unix, VIS, Resource ulilization
Operating system services 4GLS
Gonfiguration management (Outputs to other tools)

9. A SEAMLESS, OPEN ARCHITECTURE environment, the 001 tool suite inherently supports an in-
tegration of function- and object-oriented development.

before. Another alternative is to develop main portions
of the system with this approach but hook into existing
libraries at the core primitive level and reuse portions of
existing legacy code that are worth reusing, at least to get
started. In the future, however, for those systems origi-
nally developed with the tool suite, reverse engineering
becomes a matter of selecting the appropriate RAT con-
figuration or of configuring the RAT environment of
choice and then RAT'ting to the new environment.

The tool suite has evolved over the years based upon
user feedback and a continuing direction of capitalizing
more on advanced capabilities of development before the
fact. Datafacer and DFACE are examples of newer tools
to be made recently available to external users. This was
after the developers of the tool suite used it for several
months to develop the most recent versions of the tool
suite. Manager(x), an even newer capability, is similarly
evolving with the developers of the tool suite.

Once completed, new components to be added to
the tool suite environment are the generic Anti-RAT and
the architecture independent operating system (AIOS).
The Anti-RAT performs the reverse function of the RAT.
Anti-RATting is an evolution process step where one
language representation is transformed into another lan-
guage representation. With the anti-RAT legacy code and
definitions can be reverse engineered to FMaps and
TMaps and become a development before the fact system
before proceeding through the RAT process to generate
(regenerate) the target system in the language of choice.

The amount of user interaction after the FMaps and
TMaps have been generated depends on how formal the
legacy code was in the first place. It will also depend on
the degree to which the user would like to change or raise
the level of his specification (e.g. instead of anti-RATting
from FORTRAN to FMaps and TMaps and then directly
RATting to “AdaTRAN,” the user may wish to anti-RAT
to FMaps and TMaps and then raise the level of the
specification before RATting to Ada.

There are advantages and disadvantages to all these
reverse engineering approaches depending on the par-
ticular requirements and constraints of the user. The Tool
Suite currently has an instance of the Anti-RAT in that it
can generate FMaps and TMaps from equations. The user
can attach equations to the bottom nodes of FMaps and
make use of this capability.

The ATIOS will have the intelligence to understand
the semantics of functional, resource and resource-allo-
cation architectures since all of these architectures can be
defined in terms of FMaps and TMaps. It will make use
of the information in their definitions (including the
matching of independencies and dependencies between
architectures) to automatically determine sets of possible
effective matches between functional and resource archi-
tectures. The Distributed Xecutor, a module of the AIOS,
will provide for real-time distributed object management
capabilities where the user’s application will be fully
transparent to client server programming techniques and
communication protocols.

THE PARADIGN SHIFT

It becomes clear that when critical issues are dealt
with after the fact, a system’s quality and productivity in
producing it are compromised beyond belief. True reuse
is ignored. System integrity is reduced at best. Function-

ality is compromised. Responding to today’s rapidly
changing market is not practical. Deadlines are missed,
time and dollars wasted. The competitive edge is lost.
Collective experience strongly confirms that quality and
productivity increase with the increased use of develop-
ment before the fact properties. A major factor is the
inherent reuse in these systems culminating in ultimate
reuse which is automation, itself. ‘

With development before the fact, all aspects of |
system design and development are integrated with one |
systems language and its associated automation. With the
tool suite, systems engineering and software development
are merged into one discipline. Systems are constructed |
in a tinker toy-like fashion. Reuse naturally takes place
throughout the life cycle. Functions and types, no matter
how complex, can be reused in terms of FMaps and
TMaps and their integration. Objects can be reused as
OMaps. Scenarios can be reused as EMaps. Environment
configurations for different kinds of architectures can be
reused as RAT environments. A newly developed system
can be safely reused to increase even further the produc-
tivity of the systems developed with it.

The paradigm shift occurs once a designer realizes that
many of the things that he used before are no longer needed
to design and develop a system. For example, with one
formal semantic language to define and integrate all aspects
of asystem, diverse modeling languages (and methodologies
for using them), each of which defines only part of a system,
are no longer a necessary part of the process. There is no
longer a need to reconcile multiple techniques with seman-
tics that interfere with each other.

Techniques for bridging the gap from one phase of
the life cycle to another become obsolete. Techniques for
supporting the manual process rather than replacing it
such as that of maintaining source code as a separate
process are no longer needed since the source is automat-
ically generated (and regenerated) from the requirements
specification. Verification (the process of verifying that a
particular code implementation matches the require-
ments) becomes an obsolete process as well.

Techniques for managing paper documents can be
replaced by entering requirements and their changes
directly into the requirements specification data base that
supports the requirements, such as generating documen-
tation from them. Clear and accurate documentation will
be able to support reuse at the layer of human under-
standing. Testing procedures and tools for finding the
majority of errors are no longer needed because those
errors no longer exist. The majority of tools developed to
support programming as a manual process are no longer
needed.

It may be tempting at first when using a new paradigm
to want to fall back into old habits such as using an informal
method to define a part of a system. Such a method may
provide an easier means of defining, for example, the recur-
sive or the parallel parts of that aspect of the system. But
does it really define it? And is it, then, really easier? Certainly
not from the life cycle point of view.

In the end, the right combination of methodology
and the technology that executes that methodology forms
the foundation of successful software. Software is so
ingrained in our society that its success or failure changes
- dramatically the way businesses, including the agencies

1
|
|
|
1
|
|
|
1
|
'
|
|
1
|
|
I
|
|
|
|
1
|
|
!
|
|
|
1
|
|
1
|
|
|
|
|
|
|
|
|
|
1
|
1
|
|
|
|
|
|
|
|
(
|
'
|
|
|
|
|
|
|
|
|
1
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
1
|
i
|
|
|
|
|
'
'
|
|
I
1
|
|
|
|
|
'
|
I
|
|
|
|
|
|
|
|
'
|
'
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
'
|
|
|
|
|
|
|
|
|
|
!
|
|

Copyright © 1994 by Penton Publishing, Inc., Cleveland, Ohio 44114

within our own government, are operated as well as their
overall success. This is why the impact of decisions made
today about systems engineering and software develop-

ment will be felt well into the next century. Es

REFERENCES

M. Hamilton, “Zero-Defect Software: the Elusive
Goal,” IEEE Spectrum, vol. 23, no. 3, pp., 48-b3,

March 1986.

M. Hamilton and R. Hackler, 001: RA Rapid Develop-
ment Approach for Rapid Prototyping Based on a Sys-
tem that Supports its Own Life CycleS, IEEE Proceed-
ings, First International Workshop on Rapid System
Prototyping, Research Triangle Park, NC, June 1990.

B. McCauley, Software Development Tools in the
1990s, AIS Security Technology for Space Opera-

tions Conference, July 1993,
Houston,Texas.

The 001 Tool Suite Refer-
ence Manual, Version 3. Cam-
bridge, Mass., Hamilton
Technologies, Inc., January
1993.

B. Krut, Jr., Integrating 001
Tool Support in the Feature-
Oriented Domain Analysis
Methodology (CMU/SEI-93-
TR-11, ESC-TR-93-188), Pitts-
burgh, PA:Software Engineer-
ing Institute, Carnegie Mellon
University, 1993.

Software Engineering Tools
Experiment-Final Report,
Vols. 1, Experiment Sum-
mary, Table 1, p. 9, Depart-
ment of Defense, Strategic
Defense Initiative, Washing-
ton, D.C., 20301-7100.

The OpenINGRES Object Gen-
erator reference manual, Version
1, Alameda, California, ASK
Group INGRES, June 1994.

Margaret H. Hamilton
is CEO of Hamilton
Technologies Inc.
(HTT), Cambridge,
Mass., which provides
systems engineering
and software develop-
ment products. Before
this, she was CEO of
Higher Order Soft-
ware, responsible for
the development of
the first comprehen-
sive CASE tool. Ear-
lier, as head of soft-
ware engineering at
MIT's Draper lab, she
was the director of the
Apollo on-hoard flight
software project and
created Higher Order
Software, a systems
design theory.

 HistoryItem_V1
 AddMaskingTape

 Range: From page 10 to page 10
 Mask co-ordinates: Left bottom (17.95 -137.77) Right top (596.02 17.51) points

 0
 17.9462 -137.7699 596.0234 17.5065

 10
 SubDoc
 10

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 10 to page 10
 Mask co-ordinates: Left bottom (542.71 -137.77) Right top (794.33 37.15) points

 0
 542.7056 -137.7699 794.3282 37.1499

 10
 SubDoc
 10

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 9
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 9 to page 9
 Mask co-ordinates: Left bottom (17.95 527.30) Right top (603.51 679.77) points

 0
 17.9462 527.2996 603.5067 679.7698

 9
 SubDoc
 9

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 9 to page 9
 Mask co-ordinates: Left bottom (591.35 532.91) Right top (794.33 678.83) points

 0
 591.3464 532.912 794.3282 678.8344

 9
 SubDoc
 9

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 8
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 8 to page 8
 Mask co-ordinates: Left bottom (17.95 -137.77) Right top (325.69 14.70) points

 0
 17.9462 -137.7699 325.6928 14.7003

 8
 SubDoc
 8

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 8 to page 8
 Mask co-ordinates: Left bottom (310.73 -137.77) Right top (794.33 14.70) points

 0
 310.7264 -137.7699 794.3282 14.7003

 8
 SubDoc
 8

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 7
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 7 to page 7
 Mask co-ordinates: Left bottom (17.95 528.24) Right top (631.57 679.77) points

 0
 17.9462 528.235 631.5687 679.7698

 7
 SubDoc
 7

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 7 to page 7
 Mask co-ordinates: Left bottom (611.93 530.11) Right top (794.33 679.77) points

 0
 611.9252 530.1058 794.3282 679.7698

 7
 SubDoc
 7

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 6
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 6 to page 6
 Mask co-ordinates: Left bottom (17.95 -137.77) Right top (514.64 9.09) points

 0
 17.9462 -137.7699 514.6437 9.0879

 6
 SubDoc
 6

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 6 to page 6
 Mask co-ordinates: Left bottom (491.26 -137.77) Right top (794.33 11.89) points

 0
 491.2586 -137.7699 794.3282 11.8941

 6
 SubDoc
 6

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 5
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 5 to page 5
 Mask co-ordinates: Left bottom (17.95 530.11) Right top (706.40 679.77) points

 0
 17.9462 530.1058 706.4006 679.7698

 5
 SubDoc
 5

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 5 to page 5
 Mask co-ordinates: Left bottom (673.66 527.30) Right top (794.33 668.54) points

 0
 673.6617 527.2996 794.3282 668.545

 5
 SubDoc
 5

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 4
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (17.95 -137.77) Right top (647.47 6.28) points

 0
 17.9462 -137.7699 647.4705 6.2817

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 4 to page 4
 Mask co-ordinates: Left bottom (620.34 -137.77) Right top (794.33 8.15) points

 0
 620.3439 -137.7699 794.3282 8.1525

 4
 SubDoc
 4

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 3
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 3 to page 3
 Mask co-ordinates: Left bottom (17.95 531.04) Right top (647.47 679.77) points

 0
 17.9462 531.0411 647.4705 679.7698

 3
 SubDoc
 3

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 2
 1

 1

 HistoryItem_V1
 AddMaskingTape

 Range: From page 3 to page 3
 Mask co-ordinates: Left bottom (632.50 531.98) Right top (794.33 679.77) points

 0
 632.504 531.9766 794.3282 679.7698

 3
 SubDoc
 3

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 9
 10
 2
 1

 1

 HistoryList_V1
 qi2base

