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Abstract 

This paper is about a universal systems 
language based on a general systems theory, 
in large part, derived and evolved from 
lessons learned based on an empirical study of 
the Apollo on-board flight software effort. The 
language, 001AXES, was created for 
designing systems and building software to 
address problems considered next to 
impossible to solve, if not impossible, with 
traditional approaches, at least in the 
foreseeable future.  It helps to suspend any 
and all preconceived notions when first 
introduced to it and the mathematical theory 
behind it, because it is a world unto itself—a 
complete new way to think about systems and 
software.  

With this approach, instead of object 
oriented and model driven systems the 
designer thinks in terms of system oriented 
objects and system driven models. Much of 
what seems counter intuitive with traditional 
approaches, that tend to be software centric, 
becomes intuitive with this system centric 
approach. How to minimize errors and 
maximize integration of systems to software, 
reuse, open architectures, evolvable systems, 
and productivity in a system's development 
becomes better understood; this understanding  
can be used as a means to an end—designing 
better systems; building better software. 

001AXES, its preventative paradigm, and 
how it is used to address today's pressing 

system engineering issues will be discussed.  
Examples are taken from research being done 
for military systems; not heretofore addressed 
by traditional approaches.  

Introduction 

The 001AXES universal systems language 
was created for modeling systems designed 
with significantly increased reliability, higher 
productivity and lower risk, including the 
following specific objectives: a) seamless 
integration: systems to software; requirements 
to specifications to design to code, and back 
again (using the same semantics for all 
systems, including software); b) reduce defect 
rates by a factor of 10; c) improve correctness 
by built-in language properties; d) 
unambiguous requirements, specifications, 
and design; e) guarantee of system integrity 
after implementation; f) enhance traceability 
and evolvability (application to application, 
architecture to architecture, technology to 
technology); g) increase in inherent reuse 
(within and between layers); h) full life cycle 
automation (e.g., automatic generation of 
production ready code for complete software 
systems of any kind or size of application 
from system specifications); i) automation of 
much of design—reduce need of designers to 
understand details of programming languages 
and operating systems; j) eliminate need for 
high percentage of testing; k) integration of 
design and development tools. 



 

001AXES and its automation (Hamilton 
April, June 1994) are intended to address 
these objectives.  In addition to lessons 
learned from Apollo, its technology takes 
roots from concepts older (e.g., mathematics) 
and newer than Apollo including other real 
world systems, systems theory, formal 
methods, formal linguistics and object 
technologies; keeping in mind the relevance of 
a technology is independent of its age.  

 The Apollo empirical study began with 
the question "what can we do better for future 
systems and what should stay the same 
because we are doing it right (Hamilton 1986, 
2004)?"  The search was for a means to build 
ultra-reliable systems.  Early ideas for the 
technology surfaced as errors found during 
final testing were analyzed.  Interface errors 
(data flow, priority and timing errors from the 
highest to the lowest levels of a system to the 
finest grain) accounted for ~75% of all errors 
found—finding ways to improve the integrity 
of integration and communication was of the 
highest priority.  ~50% of the billions of 
dollars (by today's standard) spent on the life 
cycle was devoted to simulation, but 44% of 
the errors were found by manual means 
(eyeballing)—more automation was needed, 
especially static as opposed to dynamic.  60% 
of the errors had unwittingly existed in flights 
already flown—showing how subtle (and 
alarming) they were.  Fortunately, no software 
errors surfaced during actual flights.  

When the interface errors were analyzed in 
more detail, each error was placed into a 
category according to the means that could be 
taken to prevent it by the way a system is 
defined. During this process a mathematical 
theory was derived for defining systems such 
that the entire class of interface errors would 
be eliminated.  Since these earlier beginnings 
we have continued to find ways to address 
other system issues just by the way a system is 
defined. Results of the analysis took on 
multiple dimensions, not just for space 
missions but for systems in general.  Lessons 

learned from this effort continue today; e.g., 
systems are asynchronous in nature and this 
should be reflected inherently in the language 
used to define systems. This implies that a 
system's definition would characterize natural 
behavior in terms of real time execution 
semantics.  Designers would no longer need to 
explicitly define schedules of when events 
were to occur.  Events would instead occur 
when objects interact with other objects.  By 
describing the interactions between objects the 
schedule of events is inherently defined.  
Combined with further research it became 
clear that the root problem with traditional 
approaches is that they support users in 
"fixing wrong things up" rather than in "doing 
things in the right way in the first place".  A 
solution evolved—once understood, it became 
clear that the characteristics of good design 
can be reused by incorporating them into a 
language for defining systems. 

001AXES Universal Systems 
Language 

001AXES captures the theory based on the 
Apollo empirical studies. What had been 
created was a universal semantics for defining 
systems. What sets it apart from other 
languages is the systems paradigm upon 
which it is based, Development Before the 
Fact (DBTF) (Hamilton April 1994).  Whereas 
the traditional approach is "after the fact", or 
curative, DBTF is preventative.  Whereas a 
curative means to obtain quality is to continue 
testing until the errors are eliminated; a 
preventative means is not to allow the errors 
in, in the first place. Correctness is 
accomplished by how a system is defined, by 
"built-in" language properties (i.e., into the 
grammar). Whereas a curative means to 
accelerate design and development would be 
to add resources, a preventative approach 
would capitalize more on reuse or eliminate 
unnecessary parts of the process altogether. 
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A 001AXES definition not only "models" 
its application (e.g., as an avionics system) but 
also properties of control into its own life 
cycle that "come along for the ride"  
(ensuring, e.g., the inherent elimination of 
interface errors). Every object is a system 
oriented object (SOO), itself defined in terms 
of other SOOs.  A SOO inherently integrates 
all aspects (e.g., function, object and timing 
oriented) of a system; every system is an 
object, every object is a system.   

Unlike formal languages that are not 
friendly or practical, and friendly or practical 
languages that are not formal; 001AXES is 
considered by its users to be formal; yet 
practical and friendly (Krut 1993) (Ouwang 
1995). Unlike a formal language that is 
mathematically based but limited in scope 
from a practical standpoint (e.g., with respect 
to size or kind of systems it can be used to 
define), 001AXES extends traditional 
mathematics with a unique concept of control, 
incorporating aspects such as time and space 
into its formalism; enabling it to support the 
definition of any kind or size of system. 

A formalism for representing the 
mathematics of systems, 001AXES is based 
on a set of control axioms and formal rules for 
their application.  All representations of a 
system are defined in terms of a functional 
map (FMap) and a type map (TMap).  FMaps 
and TMaps defined for a given system are 
inherently integrated.  Three primitive 
structures (and non-primitive structures 
derived ultimately in terms of the primitive 
structures) are used to define each map. 
Primitive functions, corresponding to 
primitive operations on types defined in a 
TMap, reside at the bottom nodes of an FMap.  
Primitive types, each defined by its own set of 
axioms, reside at the bottom nodes of a TMap.  
Each primitive function (or type) can be 
realized as a top node of a map on a lower 
(more concrete) layer of the system.   

001AXES has been used to define systems 
ranging from guidance, navigation and control 

(Hamilton and Hackler 1988, 1990, 1991, 
2004) (Hamilton 2004)) to commercial 
applications (HTI 1997) (HOS 1980) (Keyes  
2000a, 2000b) to system and software tools 
(HTI 1986-2007).  It can be used to provide a 
formal semantics foundation for other 
languages such as UML2 and SysML 
(Friedenthal, S. et al. 2006) (OMG 2006).  
Diverse mappings (several automated) exist 
that go from a given syntax and semantics to 
001AXES or from 001AXES to one of a 
possible set of syntactical forms (and 
semantics), e.g., (Krut 1993)  (Hamilton and 
Hackler 2000) (Cushing 1978). 

Integrated Modeling Environment 

The 001AXES language—actually a meta-
language—has mechanisms to define 
mechanisms for defining systems. Although 
the core language is generic, the user 
"language", a by-product of the definition of 
newer systems (and thus newer mechanisms), 
can be application specific, since the language 
that is semantics dependent is syntax 
independent.  Yet, every syntax shares the 
same semantics.  Also implementation and 
architecture independent, 001AXES adheres 
to the principle that everything is relative (one 
person's design is another's implementation).  
It can be used seamlessly throughout a 
system's life cycle to define and integrate all 
aspects and viewpoints (of and about the 
system and its evolution). 

Providing a mathematical framework 
within which objects and their interactions and 
relationships with other objects may be 
captured, 001AXES's philosophy is: all 
objects are recursively reusable and reliable; 
reliable systems are defined in terms of 
reliable systems; only reliable systems are 
used as building blocks; and only reliable 
systems are used as mechanisms to integrate 
these building blocks.  The new system along 
with more primitive ones can then be used to 
define (and build) more complex reliable 
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systems.  If a system is reliable, all the objects 
in all its levels and layers are reliable. 

Six Axioms of Control 

At the base of the theory behind 001AXES 
that embodies every system is a set of six 
axioms—universally recognized truths—and 
the assumption of a universal set of objects 
(Hamilton and Zeldin 1976, 1979).  Each 
axiom defines a relation of immediate 
domination of a parent object over its children 
objects.  The union of these relations is 
control. The axioms establish the relationships 
of an object for invocation, input (domain) 
and output (codomain), input access rights, 
output access rights, error detection and 
recovery, and ordering during its 
developmental and operational states. 

Overarching is that all aspects within a 
001AXES universe are related to the real 
world and the language inherently captures 
this.  In so doing it meets the challenge 
linguists describe of assuring consistency in 
meaning, of “fitting together the partially 
fixed semantic entities that we carry in our 
heads—to approximate the way reality is 
fitted together as it comes to us from moment 
to moment. The entities are the world reduced 
to its parts and secured in our minds; they are 
a purse  of coins in our pocket with values to 
match whatever bargain or bill is likely to 
come our way." (Bolinger 1981) 

It is important to be able to visualize a 
system definition both with respect to what it 
does (level by level) and how it does it (layer 
by layer).  A hierarchical definition can run 
the risk of not being reliable, however, unless 
there are explicit rules that ensure that each 
decomposition is valid.  The axioms of control 
provide the formal foundation for a 001AXES 
"hierarchy" (referred to as a map which is 
both a hierarchy of control and a network of 
interacting objects); explicit rules have been 
derived from these axioms for defining a map; 
where among other things structure, behavior 
and their integration are captured.  An object 

is decomposed until the primitive objects it 
has ultimately been defined in terms of have 
been reached.  Resident at every node on an 
FMap is a function; resident on every node of 
a TMap is a type. The object at each node 
plays multiple roles, e.g., it can serve as a 
parent (in control of its children) or a child 
(being controlled by its parent).  What follows 
is a discussion of the six axioms of control and 
some derived theorems. 

Axiom 1 states that a given parent controls 
the invocation of the set of children on its 
immediate, and only its immediate lower 
level. Take for example an FMap; the parent 
controls its children to perform its own 
mapping; that is, the parent's mapping is 
completely replaced by its children’s 
mappings; no more, no less; yet the parent (as 
a controller) remains in control of its children.  
Note that a 001AXES function is a hybrid 
consisting of a traditional mathematical 
construct, i.e., an operation (mapping) and a 
linguistic construct, i.e., an assignment of 
particular variables to inputs and outputs.  
Some implications are that a parent can only 
invoke its immediate offspring; it cannot 
invoke itself, its parent, any of its descendants 
other than its immediate offspring, any other 
offspring of its own parent, another parent's 
offspring, or an offspring that invokes its 
parent; the children of each parent must 
collectively perform no more and no less than 
the parent's requirements; e.g., if a lower level 
function is removed and its ancestor still 
maintains its same mapping, the function is 
extraneous (extraneous functions proliferate 
test cases and complicate interfaces). 

Axiom 2 states that a given parent controls 
the responsibility for elements of only its own 
output space (codomain).  For an FMap this 
simply states that the role of the parent is to 
perform its own mapping.  For any given 
element in the domain of the parent's function, 
the parent is responsible for producing the 
correct corresponding element in the range 
(codomain). While the parent can get "help" 
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from its offspring in the performance of this 
function, it cannot delegate this responsibility. 
For a given input, only the parent can ensure 
the "delivery" of the corresponding output. 
Some implications are a parent loses control 
(cannot ensure correct outputs) when any of 
its offspring stop before completion, go into 
an endless loop or do not return required 
information back to the parent; the 
decomposition stopping point can be 
determined and the bottom is reached when 
each function has been defined in terms of 
other functions on a defined type; the 
functions' behavior one level from the bottom 
can be defined by understanding the behavior 
of each function at the bottom level and how it 
relates to other functions on that level; one can 
define each next highest level function in the 
same manner until the top node is reached; the 
behavior of the top node is ultimately 
determined by the behavior of the collective 
set of bottom nodes; there may be more than 
one formulation for a particular function, it is 
only necessary that the mapping be identical. 

Axiom 3 states that a given parent controls 
the output access rights (access rights is the 
ability to obtain or alter the values of 
variables) to each set of variables whose 
values define the elements of the output space 
for each immediate, and only each immediate, 
lower level child.  Axiom 3 is concerned with 
where the required range element (as 
produced by an offspring) is delivered as 
dictated by its parent.  The parent can assign 
to its offspring the right to alter the values of 
the output variables of the function that the 
offspring replaces.  Implications are: each 
range variable of the parent that an offspring 
replaces, must appear as a range variable of 
the function of at least one of its offspring; 
tracing of outputs can be traced for each and 
every performance pass (i.e., instance by 
instance); the parent’s output variables are a 
subset of the output variables of the collective 
children. 

Axiom 4 states that a given parent controls 
the input access rights to each set of variables 
whose values define the elements of the input 
space for each immediate, and only each 
immediate lower level child. It is concerned 
with the way the parent controls access to its 
domain elements; specifically the parent can 
grant its children the right to access its domain 
elements for reference only.  Implications are: 
the parent does not have the ability to alter its 
domain elements; each domain variable of the 
parent must appear as a domain variable in at 
least one of its children; inputs can be traced 
for each and every performance pass. 

Implications of both axioms 3 and 4 are: 
the variables of the output set of a function 
cannot be the variables of the input set of that 
same function.  If f(y, x) = y could exist, 
access to y would not be controlled by the 
parent at the next immediate higher level; the 
variables of the output set of one function can 
be the variables of the input set of another 
function only if they belong to functions on 
the same level.  If f1(x) = y and f2(y) = g, both 
functions exist at the same level.   

Axiom 5 states that a given parent controls 
the rejection of invalid elements of its own, 
and only its own, input set (domain).  It 
requires that the parent must ensure the 
rejection of inputs received that are not in the 
domain of the parent.  A parent, in performing 
its corresponding function, is responsible for 
determining if such an element has been 
received; if so, it must ensure its rejection. 

Axiom 6 states that a given parent controls 
the ordering of each tree for the immediate, 
and only the immediate, lower level.  Axiom 6 
requires the parent to control the order 
(including priority) based on e.g., time, events, 
importance, computational needs of the 
invocation of its children and their 
descendants.  Implications are: total order 
relationships; if two processes are scheduled 
to execute concurrently, the priority of each 
process determines precedence at the time of 
execution; the priority of a process is higher 
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than the priority of any process on its most 
immediate lower level; if two processes have 
the same parent, all processes in the control 
tree of the process with the highest priority are 
of a higher priority than all the processes in 
the control tree with the lower priority; a 
process cannot interrupt itself, or its parent. 

Other implications (derived theorems) of 
the axioms are: every object has a unique 
parent, is under control and has a unique 
priority; communication of children is 
controlled by the parent, and dependent 
functions exist at the same level; the priority 
of an object is always higher than its 
dependents and totally ordered with respect to 
other objects at its own level.  Relative timing 
between objects (including functions) is 
therefore preserved; maximum completion or 
delay time for a process is related to a given 
interrupt structure.  Absolute timing can 
therefore be established (i.e., it can be 
determined if there is enough time to do the 
job); the relationships of each variable are 
predetermined, instance by instance thus 
eliminating conflicts; each system has the 
property of single reference/single assignment.  
SOOs can therefore be defined independent of 
execution order; the nodal family (a parent 
and its children) does not know about (is 
independent of) its invokers or users; 
concurrent patterns can be automatically 
detected; every system is event driven (every 
input and every output is an event; every 
function is event driven), and can be used to 
define discrete or continuous phenomenon; 
each object, and changes to it, is traceable; 
each object can be safely reconfigured; every 
system can ultimately be defined in terms of 
three primitive control structures, each of 
which is derived from the six axioms—a 
universal semantics, therefore, exists for 
defining systems. 

Universal Primitive Structures 

A structure relates members of a nodal 
family according to a set of rules derived from 

the axioms of control.  A primitive structure 
provides a relationship of the most primitive 
form of control between objects on a map.  All  
maps are defined ultimately in terms of three 
primitive control structures, and therefore 
abide by the formal rules associated with each 
structure: a parent controls its children to have 
a dependent relationship (Join), independent 
relationship (Include), or a decision making 
relationship (Or).  Figure 1 contains a 
description of the three primitive structures; 
used generically in both TMap or FMap 
definitions; Figure 2 contains a description of 
the rules as applied to an FMap.  Figure 3 
shows two independent syntactical forms that 
can be used to represent the semantics of the 
three primitive control structures. 

 
Figure 1: Primitive Control Structures 

 
Figure 2: Rules for Primitive Structures 

The structures ensure that all interface 
errors (75% to 90% normally found, if found 
at all, during testing in a traditional 
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development) are eliminated "before the fact" 
at the definition phase.  Although a system 
defined in these structures has properties for 
systems in general, the properties have special 
significance for real time, distributed aspects 
of a system (that every system ultimately has): 
each system is event interrupt driven; each 
object is traceable, reconfigurable, and has a 
unique priority; independencies and 
dependencies can readily be detected 
(manually or automatically) and used to 
determine where parallel and distributed 
processing is most beneficial. 

    
Figure 3: Syntax Independence 

Definition and Execution Space 

SOOs are defined in terms of FMaps and 
TMaps—FMaps to represent the dynamic 
(doing) world of action by capturing 
functional and time (including priority) 
characteristics and TMaps to represent the 
static (being) world of objects by capturing 
spatial characteristics (e.g., containment of 
one object by another).  Maps guide a designer 
in thinking through concepts at all levels and 
layers of system design and the 001 Tool Suite 
(001), the automation of 001AXES, in 
automatically generating resource allocation 
designs and the system’s software. 

With a map, everything you need to know 
(no more, no less) is available. Inherent are 
features such as polymorphism, encapsulation 
and inheritance; the functional side is defined 
in terms of the type side and vice versa, 
providing the ability to automatically trace 

within and between levels and layers of a 
system (e.g., in an FMap, an output variable of 
a function is fully traceable to all other 
functions using that variable’s object state). 

FMaps are used for defining functions and 
their relationships to other functions using the 
types of objects in the TMap(s).  Each 
function on an FMap has one or more objects 
as its input and one or more objects as its 
output.  Each object resides in an object map 
(OMap) and is a member of a type from a 
TMap.  TMaps are used for defining types and 
their relationships to other types.  Every type 
on a TMap owns a set of inherited primitive 
operations for their allowed FMap functional 
relationships.  FMaps are inherently integrated 
with TMaps, in fact recursively so, by using 
objects (members of the types in the TMap) 
and their primitive operations (e.g., if a type is 
changed on a TMap, all FMap areas impacted 
are traceable).  FMaps are defined in terms of 
TMaps and TMaps are defined in terms of 
FMaps. FMaps are used to define, integrate, 
and control the transformations of objects 
from one state to another state. 

A SOO is realized (has all its values 
instantiated for a particular performance pass) 
in terms of execution maps (EMaps), each an 
instantiation of an FMap, and OMaps, each an 
instantiation of a TMap.  When an object state 
beginning event occurs, each function that 
depends on that object state is instantiated.  
This instantiation process always results in a 
totally ordered (in terms of priority) map of 
function instances; when a function instance 
becomes ready to execute it is always 
inherently correctly scheduled and allocated to 
the appropriate resource(s).  Figure 4 shows 
an example of scheduling with a performance 
pass of a function, F. 

Past, present and future related indicators 
are used to identify when a line of control or 
action (i.e., a function instance) occurs; or 
when an object state exists.   Subfunctions, A 
and B, are concurrently executing in interval 
1, with object states, a and b, respectively.  In 
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interval 2, A(a) is still active and F's control 
jumps ahead to include activating E(b1) 
concurrently.  B is past, having produced b1, 
and C(a1) and D(c) will be future actions.  In 
interval 3, E(b1) has completed, producing e, 
an output event in partial completion of F, 
while F continues with C(a1). 

 
Figure 4: Real Time Event Scheduling 
Using an integrated set of OMaps and 

EMaps a system is able to be understood in 
terms of its behavior (e.g., cost, risk, and real 
time characteristics) and structure. OMaps and 
EMaps are always under the control (thereby 
following the control axioms) of the FMaps 
and TMaps from which they were instantiated. 

Typically, a team of designers begins by 
sketching a TMap(s); where they decide on 
the types of objects (and the relationships 
between them) in their system. Often a Road 
Map (RMap), that organizes all system objects 
including FMaps and TMaps, is sketched in 
parallel with the TMap. Once a TMap has 
been agreed upon, the FMaps begin almost to 
fall into place because of the natural 
functionality (or groups of functionality) 
resident in the TMap system.  The TMap 
provides the structural criteria from which to 
evaluate the functional partitioning of the 
system (e.g., the shape of the structural 
organization of the FMaps is balanced against 
the structural organization of the shape of the  
potential objects as defined by the TMap).  
With FMaps and TMaps a system (and its 
viewpoints) is divided into components and 
groups of components which naturally work 
together. 

User Defined Structures 

Any system can be defined completely 
using only the primitive structures, but less 
primitive structures accelerate the process of 
defining and understanding a system.  Since 
non-primitive structures are ultimately derived 
from the three primitives, they are governed 
by the control axioms.  Defined structures for 
both FMaps and TMaps can be created for any 
kind of system. A powerful template form of 
reuse, the defined structure provides a 
mechanism to define a map without some of 
its elements being explicitly defined. An 
FMap structure has unknown functions; a 
TMap structure has unknown types.  Async is 
an example of a real time, distributed, 
communicating FMap defined structure with 
both asynchronous and synchronous behavior.  
TreeOf is an example of a TMap defined 
structure (a collection of the same type of 
objects ordered using a tree indexing system). 
Each type structure assumes its own set of 
possible control relations for its parent and 
children types. Abstract types decomposed 
with the same type structure on a TMap 
inherit (or reuse) the same primitive 
operations and therefore the same behavior 
(each of which is available to FMaps that have 
access to members of each of its types). With 
the use of FMaps, TMaps and user defined 
structures as well as other forms of 001AXES 
reuse, a system is defined from the very 
beginning to inherently maximize the potential 
for its own reuse. 

Figure 5 shows an interrupt structure that 
performs the functions, I? and/or F?, that are 
to be defined when interrupt is used in another 
FMap.  The key to understanding interrupt is 
the primitive operation, is:present(i).  
is:present is evaluated asynchronously when 
the value of s0 is available.  If the value of i is 
available, then I? is performed; otherwise, F? 
is performed and this process is repeated.  
Figure 6 shows a set of execution snapshots 
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(EMaps) depicting the performance of 
interrupt.   

 
Figure 5: Interrupt Structure 

In the first snapshot, since s0 is available 
and i is not, is:present returns False and 
continue invokes F?(s0).  After the first F 
completes, the interrupt leaf function checks 
the state of i again (still not available), selects 
continue, invokes another F, F?(s1) with a 
revised state of s0.  This process continues 
until i becomes available.  Interrupt 
granularity is based on the time it takes to 
complete F. 

    
Figure 6: Interrupt Execution Snapshots 

Figure 7 shows a real time structure 
designed for the repeated scheduling of a   
function within a period of time.  The result of 
the repeated application of F is returned when 
run:timer(et)=end completes, setting 
is:present,any(end) to True.  The parent of db0 
is returned by into(db0)=P.  Since the 
invocation of functions are asynchronous and 
event driven, the function, run:timer, does not 
block continued processing of RUN.  
is:present is asynchronously evaluated only 
when the object states for db0 and/or st are 
available.  F?(db0) and run:timer(st) are able 
to execute simultaneously.  When both 

complete, when:all,present synchronizes st1 
and db1 as st2 and db2 respectively; only then 
will the RUN EMap leaf node be invoked.  In 
the use of this structure, F? should perform 
within the schedule time interval so that other 
lower priority functions (i.e., those having 
lower priority than the parent user of this 
structure) have an opportunity to execute.  The 
period time of a schedulePeriod TMap 
structure is assumed to be larger than the 
schedule time (and could be defined explicitly 
with constraints). 

 
Figure 7: Periodic Structure 

Figure 8 shows a guidance, navigation and 
control application of the periodic structure 
that could be used within a larger (e.g., 
vehicle) system.  The nesting of the functions, 
NGC, GC and C, inherit the real time schedule 
characteristics defined by the periodic 
structure.  The priority of a function is 
determined by its location within its FMap.  
The ci structure  derived from the Include 
structure defines C as a higher priority than 
guidance and GC as a higher priority than 
navigation.  Therefore, control may interrupt 
guidance which in turn may interrupt 
navigation.  If only one processor is available, 
then control always executes first.  Any 
leftover processing time is then given to 
guidance and then to navigation.  Any number 
of processors can be added without rewriting 
the application because scheduling is built-in. 

The completion of a nested period of time 
(e.g., C within GC) corresponds to when finer 
grained information of a faster cyclic period is 
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available to a slower cyclic period of time.  
The support structure, getPut, provides access 
and security between databases (e.g., control, 
guidance and navigation databases).  In an 
OMap, get:c removes a child from its parent, 
p0, and put:c puts the child back, under, its 
parent, p1.  Once put:c has been applied by the 
getPut structure, guidance has access to (and 
may change) control's period and schedule 
times; but, control can not change the 
schedule or period times of guidance or 
navigation, providing a form of security. 

 
Figure 8: GN&C Application 

A user defined structure that can be used 
generically in both TMaps and FMaps is 
called a universal structure.  This universality 
derives from the fact that each map node has a 
mapping and each universal primitive 
mapping may be used at a leaf node with an 
interpretation that is dependent on whether it 
is used in a TMap or an FMap.  When 
interpreted within a TMap a primitive 
mapping makes a static correspondence 
between its domain and codomain.  Because 
of the static nature of a TMap mapping, either 
its left or right set of relations may become the 
domain of an FMap function; the other set 
then becomes the corresponding codomain of 
the FMap function. In an FMap, a primitive 
mapping makes a dynamic correspondence 
from its domain to its codomain.   

Jset is a user defined universal structure 
(see Figure 9).  Jset is recursive (because of its 
reuse leaf node, Jset).  Object instances of this 
structure result in co-dependent patterns of 
some type, T?, with zero, one or two other T 
elements.  This structure can easily define cars 
on a road, people standing in a line or a 
repeated set of dependent functions.  
Dependencies between T elements are 
identified by the relations, r and r1.  r and r1 
are inverse relations.  When a T is r1 related to 
a second T, the second T is r related to the 
first T.  In a TMap r and r1 are interpreted as 
relations between different object states of T; 
in an FMap, r and r1 are interpreted as 
different object states. 

 
Figure 9: The Jset Structure 

Within Jset interface elements, identified 
by the Syntax statement, are unknowns that 
need to be satisfied by a particular use.  An 
interface element resolved in some context 
may again be unknown due to its participation 
in its context map's interface.  Ultimately, 
unknown elements are statically or 
dynamically resolved, completing their related 
definitions so that they can be instantiated (or 
executed).  In addition, if a structure has 
primitive operations, their unknown elements 
will be resolved by its use in a TMap (e.g., the 
parent, cars, using Jset will inherit Jset's 
primitive operations with appropriate 
resolutions such as cars replacing Jset, see 
Figure 9 and Figure 10). 

Jset is used, in Figure 10, to decompose 
both a TMap type, cars, and an FMap 
function, largestCar.  Unknowns resolved in 
the TMap context are types: cars, car and Any; 
and the value Null.  Unknowns resolved in the 
FMap context are functions: largestCar, 
check_car, is:Null and Id:2.  Since Jset is used 
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to structure the set of cars, each car may have 
a before and next relation to two other cars.  A 
car object depends on other car objects with 
these relations.  The use of these relations in 
an FMap are supported by the primitive 
operations, before(car)=car and next(car)=car, 
respectively.  When a cars OMap is created 
(instantiated), manipulated or examined a set 
of universal map operators may be used.  
These are inherited by any map type of object 
(e.g., a concrete object like car or a more 
generic object like an OMap, a TMap, an 
EMap or an FMap); and resolved just as with 
Jset (e.g., k:cars(Any)=cars inherited from 
type TMap). 

 
Figure 10: An Application of Jset 

The largestCar function uses Jset to 
recursively process all cars and return the 
largest car (a Rational number, Rat).  
check_car evaluates a car with larger_or_not 
and advances from the current car, c0, to the 
car, c1, at the other end of the next relation 
using the next(c0)=c1.  The decision function, 
larger_or_not, determines if car, c0, is greater 
than the currently known largest car, lc0, 
using partition function, gt(c0,lc0), where gt is 
an infix operator meaning greater than.  Its 
implicit output (a Boolean) is used to select c0 
(when True) as the newest largest car, lc1; or 
select (when False) the currently known one, 
lc0, to remain being the largest one as lc1.  All 
cars are evaluated when is:Null which 
replaces P in Jset's Syntax being used as a 
partition function implicitly returns True, 
selecting the Id:2 function as the final step in 
largestCars’s recursive processing.  The 
function Id:2 (that replaces E in Jset's Syntax) 

is used to select the second element of the 
ordered set (i.e., c0,lc0) that replaced r in this 
use of Jset.  The final outcome will be lc, the 
latest value of lc1.  This is because r1 in the 
recursive Jset leaf corresponds to r (by 
position) in its ancestor; and when r1 is 
replaced by “c1,lc1” in largetCar, r becomes 
“c1,lc1”.  Id:2 then selects lc1 to be lc (which 
replaced s in Jset). 

Universal Primitive Operations 

The TMap provides universal primitive 
operations, for controlling objects and object 
states, inherited by all types.  They create, 
destroy, copy, reference, move, access a value, 
detect and recover from errors, access the type 
of an object and access instances of a type; 
providing an easy way to manipulate and think 
about different types of objects. With the 
universal primitive operations, building 
systems can be accomplished in a more 
uniform manner. TMap and OMap are 
available as types to facilitate the ability of a 
system to understand itself better and 
manipulate all objects the same way.  TMap 
properties ensure the proper use of objects in 
an FMap.  A TMap has a corresponding set of 
control properties for controlling spatial 
relationships between objects (e.g., two 
objects can not exist in the same place at the 
same time.  Thus one cannot put a leg on a 
table where a leg already exists; conversely, 
one cannot remove a leg from the table where 
there is no leg; a reference to the state of an 
object cannot be modified if there are other 
references to that state in the future).  Reject 
values exist in all types, allowing the FMap 
user to recover from failures if encountered. 

As experience is gained with different 
types of applications, new reusables emerge. 
For example, a set of mechanisms was derived 
for defining interruptable, asynchronous, 
communicating, distributed controllers. This is 
essentially a second order control system 
(with rules that parallel the primary control 
system of the primitive structures) defined 
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with the formal logic of user defined 
structures.  In such a system, each distributed 
region is cooperatively working with other 
distributed regions and each parent controller 
may interrupt the children under its control.  
These reusables can also be used to manage 
other types of processes (e.g., those used to 
manage a development environment).   

Constraints 

When designing a system, it is important 
to understand the performance constraints of a 
functional architecture and to have the ability 
to rapidly change configurations. A system is 
flexible to changing resource requirements if 
the functional architecture definition is 
separated from its resource definitions. To 
have the necessary built-in controls, the same 
language, 001AXES, is used to define 
functional, resource and allocation 
architectures.   

The meta-language properties of the 
language can be used to define global and 
local constraints for both FMaps and TMaps; 
constraints themselves defined in maps.  If we 
place a constraint on the definition of a 
function (e.g., where sendBy:vehicle takes 2 
hours), it influences all other functions that 
use this definition.  Such a constraint is global 
with respect to the uses of the original 
function.  

Global constraints may be further 
constrained or overridden by local constraints 
placed in the context of the definition that uses 
the original function definition (e.g., where 
sendBy:car takes 4 hours, overriding the 
default).  The validity of constraints and their 
interaction with other constraints can be 
analyzed by static or dynamic means with 
001.  The property of being able to trace an 
object throughout a definition supports this 
type of analysis; it provides the ability to 
collect information on an object as it 
transitions from function to function. As a 
result, one can determine direct and indirect 
causal effects of constraints. 

Automation 

Because of a SOO’s inherent support of 
automation; more automation is possible (e.g., 
much of a system’s design can be 
automatically generated from SOOs).  Given a 
set of FMaps and TMaps, 001 has the means 
to perform requirements analysis and to 
simulate and observe the behavior of a system 
as it evolves and executes in terms of OMaps 
and EMaps; if it is software the same FMaps 
and TMaps can be used to automatically 
generate a complete software system of any 
kind or size resulting in production ready code 
and documentation; in fact, 001 is defined 
with itself and automatically generates itself.  
That used to build other systems builds itself. 

One might ask "how can one build a more 
reliable system and at the same time increase 
the productivity in building it"?  Take for 
example, testing.  Unlike a traditional 
approach with a "test to death" philosophy 
where the more reliable the system the less the 
productivity, with 001 the more reliable the 
system the higher the productivity—less 
testing is needed with each new before the fact 
capability.  Before the fact "testing" is 
inherently part of every design and 
development step. Errors are prevented 
because of that which is inherent or 
automated. Correct use of 001AXES 
eliminates interface errors; the 001Analyzer 
statically hunts down errors in case the 
language was not used correctly. Testing for 
integration errors is minimized, since SOOs 
are inherently integrated.  Automation 
removes the need for most other testing (e.g., 
since the 001 Resource Allocation Tool 
(RAT) automatically generates all the code, no 
manual coding errors will be made).  And, 
since the RAT can be configured to generate 
to an architecture of choice, no manual errors 
result from conversion to a new architecture.  
Other test cases are not necessary to develop 
because they are automatically generated as 
part of the RAT generation process. 
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The 001DXecutor component of 001 is a 
distributed runtime execution engine.  
001DXecutors form a hierarchy, each 
managing its own resources (e.g., different 
CPUs)  and communicating (e.g., using 
TCPIP) to other 001DXecutors.  They form a 
substrate upon which a 001AXES system can 
be executed with asynchronous event driven 
behavior.  This takes advantage of the inherent 
asynchronous and priority properties built into 
the grammar of 001AXES to automatically 
coordinate and schedule, providing enhanced 
reliability and eliminating unnecessary design 
tasks (e.g., it is estimated that ~80% of the 
UML2 specification standard could be 
eliminated with a 001AXES 001DXecutor 
active object substrate). 

Take also reuse.  The more the inherent  
reuse; the higher the reliability and 
productivity. Not only does a SOO have 
properties to support the designer in finding, 
creating and using commonalty from the very 
beginning of a life cycle; commonalty is 
ensured simply by having used 001AXES to 
define it; providing the opportunity for many 
parts of the life cycle to become no longer 
needed. Every object is a candidate reusable—
and integratable—within the same system, 
other systems and their evolution. 

Conclusion 

Unlike having first created a language 
with a syntax first, syntax dependent approach 
with informal semantics; with 001AXES a 
formal systems theory was derived from an 
empirical study of real world systems; a 
universal systems language was then derived 
for defining (and developing) system oriented 
objects based on the generic system semantics 
of the systems theory (a semantics first, syntax 
independent approach). Unlike additional 
languages, language mechanisms, rules and 
tools being added, ad hoc and "after the fact", 
as more is learned about a class of systems; 
with 001AXES, additional language 
mechanisms and tools are derived ultimately 

in terms of the core set of the universal 
language's primitive mechanisms.  

With 001AXES semantics, system 
designers have the potential to eliminate well 
known problems; because of the properties 
that in essence "come with the territory": more 
reliable systems, integration of systems to 
software, reduction of testing without 
compromising a system's integrity and having 
the ability to maximize reuse are all well 
within reach.  It is not magic.  No more than 
many things we now take for granted, that 
were themselves once thought of as magic.  
What at first appears to be magic, because it is 
not yet familiar, transitions to common sense 
once understood—a duality of control and 
flexibility in the process of organizing one’s 
thoughts and recording them—so automation 
can take over and finish the job.  Collective 
experience strongly confirms that quality and 
productivity both increase with the increased 
use of properties of preventative systems.  
Compared to traditional techniques, the 
productivity of 001AXES systems has been 
shown to be significantly greater (DoD 1992) 
(Krut 1993) (Ouyang 1995) (Keyes 2000a) 
(Schindler 1990) (SPC 1998) (htius.com) 
(icb.nasa.gov/001).  It was also discovered 
that the productivity was greater the larger and 
more complex the system—the opposite of 
what one finds with traditional approaches.  
This is, in part, because of the high degree of 
001AXES’s formal and inherent support of 
reuse.  The larger a 001AXES system, the 
more it has the opportunity to capitalize on 
reuse.  As more reuse is employed, 
productivity increases.  Measuring it becomes 
a process of relativity—relative to the latest 
system developed.   

By inheriting the preventative philosophy 
of 001AXES, users have the potential to solve 
a given problem as early as possible, which 
means finding a problem statically is better 
than finding it dynamically.  Preventing it by 
the way a system is defined is even better.  
Better yet, is not having to define (and build) 
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it at all.  The ultimate reusable is in the 
application of the technology to both systems 
and software unifying their understanding by a 
formal means with a commonly held set of 
system semantics.   

001AXES's formal systems theory began 
with Apollo, the ideal environment for jump 
starting a "never in the box" technology.  
There was no school to attend or field to learn 
what today is known as software engineering 
(or computer based "systems engineering" as 
it has become known today).  One had to 
“learn” a field(s) that did not yet exist.  When 
there were no answers, problems had to be 
solved that no one had ever solved before.  
Things had to work, and work the first time. 

001AXES's creation together with its 
automation and experiences in its application 
is research and development in progress. Its 
technology was created to address problems 
considered difficult, at best, to solve (not the 
least of which was that of responding to the 
actions resulting from lessons learned). 
Analysis of lessons learned using 001AXES 
and its automation continues in a manner not 
unlike the empirical studies of Apollo's 
systems.  Again and again we learn from 
experience (that of 001AXES users, including 
our own experience as 001AXES users) and 
evolve accordingly; maximizing the degree of 
preventiveness, i.e., that which is inherent and 
that which becomes no longer necessary. 
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